The Roman Philosopher Lucius Anneaus Seneca (4 BCE-65 CE) was perhaps the first to note the universal trend that growth is slow but ruin is rapid. I call this tendency the "Seneca Effect."

Saturday, April 19, 2014

The Seneca effect in the Easter egg hunt


Originally published on Cassandra's legacy on Saturday, April 19, 2014


For the Easter of 2014, let me repropose my post on the dynamic modelling of the Easter egg hunt which, for some reason, has been the most successful post ever to be published (in 2012) on the former "Cassandra's Legacy" blog, now known as "Resource Crisis." -Happy Easter, everyone!





Here is a little Easter post where I try to model the Easter Egg hunt as if it were the production of a mineral resource. A simple model based on system dynamics turns out to be equivalent to the Hubbert model of oil production. We can have "peak eggs" and the curve may also take the asymmetric shape of the "Seneca Peak." So, even this simple model confirms what the Roman Philosopher told us long ago: that ruin is much faster than fortune. (Image fromuptownupdate)


For those of you who may not be familiar with the Easter Bunny tradition, let me say that, in the US, bunnies lay eggs and not just that: for Easter, they lay brightly colored eggs. The tradition is that the Easter Bunny spreads a number of these eggs in the garden and then it is up to the children to find them. It is a game that children usually love and that can last quite some time if the garden is big and the bunny has been a little mean in hiding the eggs in difficult places.

A curious facet of the Easter Egg hunt is that it looks a little like mineral prospecting. With minerals, just as for eggs, you need to search for hidden treasures and, once you have discovered the easy minerals (or eggs), finding the well hidden ones may take a lot of work. So much that some eggs usually remain undiscovered; just as some minerals will never be extracted.

Now, if searching for minerals is similar to searching for Easter Eggs, perhaps we could learn something very general if we try a little exercise in model building. We can use system dynamics to make a model that turns out to be able to describe both the Easter Eggs search and the common "Hubbert" behavior of mineral production. The exercise can also tell us something on how system dynamics can be used to make "mind sized" models (to use an expression coined by Seymour Papert). So, let's try.

System dynamics models are based on "stocks"; that is amounts of the things you are interested in (in this case, eggs). Stocks will not stay fixed (otherwise it would be a very uninteresting model) but will change with time. We say that stocks (eggs) "flow" from one to another. In this case, eggs start all in the stock that we call "hidden eggs" and flow into the stock that we call "found eggs". Then, we also need to consider another stock: the number of children engaged in the search.

To make a model, we need to make some assumptions. We could say that the number of eggs found per unit time is proportional to the number of children, which we might take as constant. Then, we could also say that it becomes more difficult to find eggs as there are less of them left. That's about all we need for a very basic version of the model.

Those are all conditions that we could write in the form of equations, but here we can use a well known method in system dynamics which builds the equations starting from a graphical version of the model. Traditionally, stocks are shown as boxes and flows as double edged arrows. Single edged arrows relate stocks and flows to each other. In this case, I used a program called "Vensim" by Ventana systems (free for personal and academic use). So, here is the simplest possible version of the Easter Egg Hunt model:



As you see, there are three "boxes," all labeled with what they contain. The two-sided arrow shows how the same kind of stock (eggs) flows from one box to the other. The little butterfly-like thing is the "valve" that regulates the flow. Production depends on three parameters: 1) the ability of the children to find eggs, 2) the number of children (here taken as constant) and 3) the number of remaining hidden eggs. 

The model produces an output that depends on the values of the parameters. Below, there are the results for the production flow for a run that has 50 starting eggs, 10 children and an ability parameter of 0.006. Note that the number of eggs is assumed to be a continuous function. There are other methods of modeling that assume discrete numbers, but this is the way that system dynamics works.





Here, production goes down to nearly zero, as the children deplete their egg reservoir. In this version of the model, we have robot-children who continue searching forever and, eventually, they'll always find all the eggs. In practice, at some moment real children will stop searching when they become tired. But this model may still be an approximate description of an actual egg hunt when there is a fixed number of children - as it is often the case when the number of children is small.

But can we make a more general model? Suppose that there are many children and that not all of them get tired at the same time. We may assume that they drop out of the hunt simply at random. Then, can we assume that the game becomes so interesting that more children will be drawn in as more eggs are found? That, too can be simulated. A simple way of doing it is to assume that the number of children joining the search is proportional to the number of eggs found (egg production). Here is a model with these assumptions. (note the little clouds: they mean that we don't care about the size of the stocks where the children go or come from) 



This model is a little more complex but not so much. Note that there are two new constants "k1" and "k2" used to "tune" the sensitivity of the children stock to the rest of the model. The results for egg production are the following:



Now egg production shows a very nice, bell shaped peak. This shape is a robust feature of the model. You can play with the constants as you like, but what you get, normally, is this kind of symmetric peak. As you probably know, this is the basic characteristic of the Hubbert model of oil production, where the peak is normally called "Hubbert  peak". Actually, this simple egg hunt model is equivalent to the one that I used, together with my coworker Alessandro Lavacchi, to describe real historical cases of the production of non renewable resources. (see this article published in "Energies" and here for a summary)

We can play a little more with the model. How about supposing that the children can learn how to find eggs faster, as the search goes on? That can be simulated by assuming that the "ability" parameter increases with time. We could say that it ramps up of a notch for every egg found. The results? Well, here is an example: 


We still have a peak, but now it has become asymmetric. It is not any more the Hubbert peak but something that I have termed the "Seneca peak" from the words of the Roman philosopher Seneca who noted that ruin is usually much faster than fortune. In this example, ruin comes so fast precisely because people try to do their best to avoid it! It is a classic case of "pulling the levers in the wrong direction", as Donella Meadows told us some time ago. It is counter-intuitive but, when exploiting a non renewable resource, becoming more efficient is not a good idea. 


There are many ways to skin a rabbit, so to say. So, this model can be modified in many ways, but let's stop here. I think this is a good illustration of how to play with "mind sized" models based on system dynamics and how even very simple models may give us some hint of how the real world works. This said, happy Easter, everyone!





(BTW, the model shown here is rather abstract and not thought to describe an actual Easter Egg hunt. But, who knows? It would be nice to compare the results of the model with some real world data. My children are grown-ups by now, but maybe someone would be able to collect actual data this Easter!)

Wednesday, September 18, 2013

Mineral resources and the limits to growth.



Originally published on Cassandra's legacy on Wednesday, September 18, 2013


This is a shortened version of a talk I gave in Dresden on September 5, 2013. Thanks to Professor Antonio Hurtado for organizing the interesting conference there.



So, ladies and gentleman, let me start with this recent book of mine. It is titled "The Plundered Planet." You can surely notice that it is not titled "The Developed Planet" or "The Improved Planet." Myself and the coauthors of the book chose to emphasize the concept of "Plundering"; of the fact that we are exploiting the resources of our planet as if they were free for us for the taking; that is, without thinking to the consequences. And the main consequence, for what we are concerned here is called "depletion," even though we have to keep in mind the problem of pollution as well. 

Now, there have been many studies on the question of depletion, but "The Plundered Planet" has a specific origin, and I can show it to you. Here it is.  


It is the rather famous study that was published in 1972 with the title "The Limits to Growth". It was one of the first studies that attempted to quantify depletion and its effects on the world's economic system. It was a complex study based on the best available data at the time and that used the most sophisticated computers available to study how the interaction of various factors would affect parameters such as industrial production, agricultural production, population and the like. Here are the main results of the 1972 study, the run that was called the "base case" (or "standard run"). The calculations were redone in 2004, finding similar results. 



As you can see, the results were not exactly pleasant to behold. In 1972, the study saw a slowdown of the world's main economic parameters that would take place within the first two decades of the 21st century. I am sure that you are comparing, in your minds, these curves with the present economic situation and you may wonder whether these old calculations may be turning out to be incredibly good. But I would also like to say that these curves are not - and never were - to be taken as specific predictions. No one can predict the future, what we can do is to study tendencies and where these tendencies are leading us. So, the main result of the Limits to Growth study was to show that the economic system was headed towards a collapse at some moment in the future owing to the combined effect of depletion, pollution, and overpopulation. Maybe the economic problems we are seeing nowadays are a prelude to the collapse seen by this model, maybe not - maybe the predicted collapse is still far away in the future. We can't say right now.

In any case, the results of the study can be seen at least worrisome. And a reasonable reaction when the book came out in 1972 would have been to study the problem more in depth - nobody wants the economy to collapse, of course. But, as you surely know, the Limits to Growth study was not well received. It was strongly criticized, accused of having made "mistakes" of all kinds and at times to be part of a worldwide conspiracy to take control of the world and to exterminate most of humankind. Of course, most of this criticism had political origins. It was mostly a gut reaction: people didn't like these results and sought to find ways to demonstrate that the model was wrong (or the data, or the approach, or something else). If they couldn't do that, they resorted to demonizing the authors - that's nothing now; I described it in a book of mine "Revisiting the limits to growth".

Nevertheless, there was a basic criticism of the "Limits" study that made sense. Why should one believe in this model? What are exactly the factors that generate the expected collapse? Here, I must say, the answer often given in the early times by the authors and by their supporters wasn't so good. What the creators of the models said was that the model made sense according to their views and they could show a scheme that was this (from the 1972 Italian edition of the book):



Now, I don't know what do you think of it; to me it looks more or less like the map of the subway of Tokyo, complete with signs in kanji characters. Not easy to navigate, to say the least. So, why did the authors created this spaghettimodel? What was the logic in it? It turns out that the Limits to Growth model has an internal logic and that it can be explained in thermodynamic terms. However, it takes some work to describe the whole story. So, let me start with the ultimate origin of these models:


If you have studied engineering, you surely recognize this object. It is called "governor" and it is a device developed in 19th century to regulate the speed of steam engines. It turns with the engine, and the arms open or close depending on speed. In so doing, the governor closes or opens the valve that sends steam into the engine. It is interesting because it is the first self-regulating device of this kind and, at its time, it generated a lot of interest. James Clerk Maxwell himself studied the behavior of the governor and, in 1868, he came up with a set of equations describing it. Here is a page from his original article


I am showing to you these equations just to let you note how these systems can be described by a set of correlated differential equations. It is an approach that is still used and today we can solve this kind of equations in real time and control much more complex systems than steam engines. For instance, drones. 



You see here that a drone can be controlled so perfectly that it can hold a glass without spilling the content. And you can have drones playing table tennis with each other and much more. Of course they are also machines designed for killing people, but let's not go into that. The point is that if you can solve a set of differential equations, you can describe - and also control - the behavior of quite complex systems.

The work of Maxwell so impressed Norbert Wiener, that it led him to develop the concept of "cybernetics"


We don't use so much the term cybernetics today. But the ideas that started from the governor study by Maxwell were extremely fecund and gave rise to a whole new field of science. When you use these equations for controlling mechanical system, you use the term "control theory." But when you use the equations for study the behavior of socio-economic systems, you use the term "system dynamics"

System dynamics is something that was developed mainly by Jay Wright Forrester in the 1950s and 1960s, when there started to exist computers powerful enough to solve sets of coupled differential equations in reasonable times. That generated a lot of studies, including "The Limits to Growth" of 1972 and today the field is alive and well in many areas.

A point I think is important to make is that these equations describe real world systems and real world systems must obey the laws of thermodynamics. So, system dynamics must be consistent with thermodynamics. It does. Let me show you a common example of a system described by system dynamics: practitioners in this field are fond of using a bathub as an example:

On the right you have a representation of the real system, a bathtub partly filled with water. On the left, its representation using system dynamics. These models are called "stock and flow", because you use boxes to represent stocks (the quantity of water in the tub) and you use double edged arrows to indicate flows. The little butterfly like things indicate valves and single edged arrows indicate relationship.

Note that I used a graphic convention that I like to use for my "mind sized" models. That is, I have stocks flowing "down", following the dissipation of thermodynamic potential. In this case what moves the model is the gravitational potential; it is what makes water flow down, of course. Ultimately, the process is driven by an increase in entropy and I usually ask to my students where is that entropy increases in this system. They usually can't give the right answer. It is not that easy, indeed - I leave that to you as a little exercise

The model on the left is not simply a drawing of box and arrows, it is made with a software called "Vensim" which actually turns the model "alive" by building the equations and solving them in real time. And, as you may imagine, it is not so difficult to make a model that describes a bathtub being filled from one side and emptied from the other. But, of course, you can do much more with these models. So, let me show a model made with Vensim that describes the operation of a governor and of the steam engine.


Before we go on, let me introduce a disclaimer. This is just a model that I put together for this presentation. It seems to work, in the sense that it describes a behavior that I think is correct for a governor (you can see the results plotted inside the boxes). But it doesn't claim to be a complete model and surely not the only possible way to make a system dynamics model of a governor. This said, you can give a look to it and notice a few things. The main one is that we have two "stocks" of energy: one for the large wheel of the steam energy, the other for the small wheel which is the governor. In order to provide some visual sense of this difference in size, I made the two boxes of different size, but that doesn't change the equations underlying the model. Note the "feedback", the arrows that connect flows and stock sizes. The concept of feedback is fundamental in these models.

Of course, this is also a model that is compatible with thermodynamics. Only, in this case we don't have a gravitational potential that moves the system, but a potential based on temperature differences. The steam engine works because you have this temperature difference and you know the work of Carnot and the others who described it. So, I used the same convention here as before; thermodynamic potential are dissipated going "down" in the model's graphical representation

Now, let me show you another simple model, the simplest version I can think of a model that describes the exploitation of non renewable resources:

It is, again, a model based on thermodynamics and, this time, driven by chemical potentials. The idea is that the "resources" stock as a high chemical potential in the sense that it may be thought as, for instance, crude oil, which spontaneously combines with oxygen to create energy. This energy is used by human beings to create what I can call "capital" - the sum of everything you can do with oil; from industries to bureaucracies.

On the right, you can see the results that the model provides in terms of the behavior as a function of time of the stock of the resources, their production, and the capital stock. You may easily notice how similar these curves are to those provided by the more complex model of "The Limits to Growth." So, we are probably doing something right, even with this simple model.

But the point is that the model works! When you apply it to real world cases, you see that its results can fit the historical data. Let me show you an example:


This is the case of whaling in 19th century, when whale oil was used as fuel for lamps, before it became common to use kerosene. I am showing to you this image because it is the first attempt I made to use the model and I was surprised to see that it worked - and it worked remarkably well. You see, here you have two stocks: one is whales, the other is the capital of the whaling industry that can be measured by means of a proxy that is the total tonnage of the whaling fleet. And, as I said, the model describes very well how the industry grew on the profit of killing whales, but they killed way too many of them. Whales are, of course, a renewable resource; in principle. But, of course, if too many whales are killed, then they don't have enough time to reproduce and they behave as a non-renewable resource. Biologists have determined that at the end of this fishing cycle, there were only about 50 females of the species being hunted at that time. Non renewable, indeed!

So, that is, of course, one of the several cases where we found that the model can work. Together with my co-workers, we found that it can work also for petroleum extraction, as we describe in a paper published in 2009 (Bardi and Lavacchi). But let me skip that - the important thing is that the model works in some cases but, as you would expect, not in all. And that is good - because what you don't want is a "fit-all" model that doesn't tell you anything about the system you are studying. Let's say that the model reproduces what's called the "Hubbert model" of resource exploitation, which is a purely empirical model that was proposed more than 50 years ago and that remains a basic one in this kind of studies: it is the model that proposes that extraction goes through a "bell-shaped" curve and that the peak of the curve, the "Hubbert peak" is the origin of the concept of "peak oil" which you've surely heard about. Here is the original Hubbert model and you see that it has described reasonably well the production of crude oil in the 48 US lower states.




Now, let's move on a little. What I have presented to you is a very simple model that reproduces some of the key elements of the model used for "The Limits to Growth" study but it is of course a very simplified version. You may have noted that the curves for industrial production of the Limits to Growth tend to be skewed forward and this simple model can't reproduce that. So, we must move of one step forward and let me show you how it can be doing while maintaining the basic idea of a "thermodynamic cascade" that goes from higher potentials to lower potentials. Here is what I've called the "Seneca model"


You see that I added a third stock to the system. In this case I called it "pollution"; but you might also call it, for instance, "bureaucracy" or may be even "war". It is any stock that draws resource from the "Capital" (aka, "the economy") stock. And the result is that the capital stock and production collapse rather rapidly; this is what I called "the Seneca effect"; from the roman philosopher Lucius Anneaus Seneca who noted that "Fortune is slow, but ruin is rapid".

For this model, I can't show you specific historical cases - we are still working on this idea, but it is not easy to make quantitative fittings because the model is complicated. But there are cases of simple systems where you see this specific behavior, highly forward skewed curves - caviar fishing is an example. But let me not go into that right now.

What I would like to say is that you can move onward with this idea of cascading thermodynamic potentials and build up something that may be considered as a simplified version of the five main stocks taken into account in the "Limits to Growth" calculations. Here it is


Now, another disclaimer: I am not saying that this model is equivalent to that of the Limits to Growth, nor that it is the only way to arrange stocks and flows in order to produce similar results to the one obtained by the Limits to Growth model. It is here just to show to you the logic of the model. And I think you can agree, now, that there is one. The "Limits" model is not just randomly arranged spaghetti, it is something that has a deep logic based on thermodynamics. It describes the dissipation of a cascade of thermodynamic potentials.

In the end, all these model, no matter how you arrange their elements, tend to generate similar basic results: the bell shaped curve; the one that Hubbert had already proposed in 1956


The curve may be skewed forward or not, but that changes little on the fact that the downside slope is not so pleasant for those who live it.

Don't expect this curve to be a physical law; after all it depend on human choices and human choices may be changed. But, in normal conditions, human beings tend to follow rather predictable patterns, for instance exploiting the "easy" resources (those which are at the highest thermodynamic potential) and then move down to the more difficult ones. That generates the curve.

Now, I could show you many examples of the tendency of real world systems to follow the bell shape curve. Let me show you just one; a recent graph recently made by Jean Laherrere.



These are data for the world's oil production. As you can see, there are irregularities and oscillations. But note how, from 2004 to 2013, we have been following the curve: we move on a predictable path. Already in 2004 we could have predicted what would have been today's oil production. But, of course, there are other elements in this system. In the figure on the right, you can see also the appearance of the so-called "non-conventional" oil resources, which are following their own curve and which are keeping the production of combustible liquids (a concept slightly different from that of "crude oil) rather stable or slightly increasing. But, you see, the picture is clear and the predictive ability of these models is rather good even though, of course, approximate.

Now, there is another important point I'd like to make. You see, these models are ultimately based on thermodynamics and there is an embedded thermodynamic parameter in the models that is called EROI (or EROEI) which is the energy return for the energy invested. It is basically the decline in this parameter that makes, for instance, the extraction of oil gradually producing less energy and, ultimately, becoming pointless when the value of the EROEI goes below one. Let me show you an illustration of this concept:



You see? The data you usually read for petroleum production are just that: how much petroleum is being produced in terms of volume. There is already a problem with the fact that not all petroleums are the same in the sense of energy per unit volume, but the real question is the NET energy you get by subtracting the energy invested from the energy produced. And that, as you see, goes down rapidly as you move to more expensive and difficult resources. For EROEIs under about 20, the problem is significant and below about 10 it becomes serious. And, as you see, there are many energy resources that have this kind of low EROEI. So, don't get impressed by the fact that oil production continues, slowly, to grow. Net energy is the problem and many things that are happening today in the world seem to be related to the fact that we are producing less and less net energy. In other words, we are paying more to produce the same. This appears in terms of high prices in the world market.

Here is an illustration of how prices and production have varied during the past decades from the blog "Early Warning" kept by Stuart Staniford.



And you see that, although we are able to manage a slightly growing production, we can do so only at increasingly high prices. This is an effect of increasing energy investments in extracting difficult resources - energy costs money, after all.
So, let me show you some data for resources that are not petroleum. Of course, in this case you can't speak in terms of EROEI; because you are not producing energy. But the problem is the same, since you are using fossil fuels to produce most of the commodities that enter the industrial system, and that is valid also for agriculture. Here are some data.



Food production worldwide is still increasing, but the high costs of fossil fuels are causing this increase in prices. And that's a big problem because we all know that the food demand is highly anelastic - in plain words you need to eat or you die. Several recent events in the world, such as wars and revolutions in North Africa and Middle East have been related to these increases in food prices.

Now, let me go to the general question of mineral production. Here, we have the same behavior: most mineral commodities are still growing in terms of extracted quantities, as you can see here (from a paper by Krausmann et al, 2009 http://dx.doi.org/10.1016/j.ecolecon.2009.05.007)



These data go up to 2005 - more recent data show signs of plateauing production, but we don't see clear evidence of a peak, yet. This is bad, because we are creating a climate disaster. As you seee from the most recent data, CO2 are still increasing in a nearly exponential manner

 

But the system is clearly under strain. Here are some data relative to the average price index for aluminum, copper, gold, iron ore, lead, nickel, silver, tin and zinc (adapted from a graphic reported by Bertram et al., Resource Policy, 36(2011)315)



So, you see, there has been this remarkable "bump" in the prices of everything and that correlates well with what I was arguing before: energy costs more and, at the same time, energy requirements are increasing because of ore depletion. At present, we are still able to keep production stable or even slowly increasing, but this is costing to society tremendous sacrifices in terms of reducing social services, health care, pensions and all the rest. And, in addition, we risk to destroy the planetary ecosystem because of climate change.

Now I can summarize what I've been saying and get to the take-home point which, I think can be expressed in a single sentence "Mining takes energy"


Of course, many people say that we are so smart that we can invent new ways of mining that don't require so much energy. Fine, but look at that giant wheel, above, it used to extract coal in the mine of Garzweiler in Germany. Think of how much energy you need to make that wheel; do you think you could use an i-pad, instead?

In the end, energy is the key of everything and if we want to keep mining, and we need to keep mining, we need to be able to keep producing energy.  And we need to obtain that energy without fossil fuels. That's the concept of the "Energy Transition"



Here, I use the German term "Energiewende" which stands for "Energy Transition". And I have also slightly modified the words by Stanley Jevons, he was talking about coal, but the general concept of energy is the same. We need to go through the transition, otherwise, as Jevons said long ago, we'll be forced to return to the "laborious poverty" of older times.

That doesn't mean that the times of low cost mineral commodities will ever return but we should be able to maintain a reasonable flux of mineral commodities into the industrial system and keep it going. But we'll have to adapt to less opulent and wasteful life as the society of "developed" countries has been accustomed so far. I think it is not impossible, if we don't ask too much:


h/t ms. Ruza Jankovich - the car shown here is an old Fiat "500" that was produced in the 1960s and it would move people around without the need of SUVs

Monday, July 15, 2013

The punctuated collapse of the Roman Empire

originally published on "Cassandra's Legacy" on Monday, July 15, 2013


I defined as the "Seneca Cliff" the tendency of some systems to collapse after having peaked. Here I start from some considerations about whether the collapse could be smooth or an uneven process that we could define as "punctuated." I am taking the Roman Empire as an example and showing that it did decline much faster than it grew. But the decline was surely far from smooth. 

The idea of an impending collapse of our civilization is already bad enough in itself, but it has this little extra-twist that collapse may be given more speed by what I called the "Seneca Cliff," from the words of the Roman Philosopher who had noted first that, "Fortune is slow, but ruin is rapid". The concept of the Seneca Cliff seems to have gained some traction over the Web and many people have been discussing it. Recently, I found an interesting comment on this pointby Jason Heppenstall on his blog "22 billion energy slaves". He summarizes the debate as:

"In the fast-collapse camp are the likes of Dmitry Orlov (who bases his assessment on his experience of seeing the USSR implode) and Ugo Bardi, who expects a ‘Seneca’s Cliff’ dropoff. James Kunstler, Michael Ruppert and any number of others can probably also be added to the fast-collapse camp.

By comparison, the likes of John Michael Greer reckon we are in for a drawn-out era of terminal decline punctuated by serious crises which, at the time, will seem rather severe to all involved but which will give way to plateaux of relative stability, albeit at a lower level of energy throughput."

Actually, the two camps may not be in such a radical disagreement with each other as they are described. The idea of the fast (or Seneca-like) collapse does not necessarily mean that collapse will be continuous or smooth. The model that describes the Seneca effect does give that kind of output, but models are - as usual - just approximations. The real world may follow the curve in a series of "bumps" that will give an impression of recovery to the people who will experience the painful descent period.

So, collapse may very well be "punctuated: a series of periods of temporary stability, separated by severe crashes. But it may still be much faster than the previous growth had been. I discussed this point already in my first post on the Seneca Effect, but let me return on this subject and let me consider one of the best known cases of societal collapse: that of the Roman Empire.

First of all: some qualitative considerations. Rome's foundation goes back to 753 BC; the end of the Western Empire is usually taken as 476 AD, with the dethroning of the last Western Emperor, Romulus Augustus. Now, in between these two dates, a time span of more than 1200 years, the Empire peaked. When was that?

The answer depends on which parameter we are considering but it seems clear that, whatever choice we make, the peak was not midway - it was much later. The Empire was still strong and powerful during the 2nd century AD and we might take the age of Emperor Trajan as the peak (he died in 117 AD) as "peak empire." We may also note that up to the time of Emperor Marcus Aurelius (who died in 180 AD), the empire didn't show evident signs of weakness, so we could take the peak as occurring in mid or late 2nd century AD. In the end, the exact date doesn't matter: the Empire took around 900 years to go from the foundation of Rome to the 2nd century peak. Then, it took just 400 years - probably less than that - for the Empire to wither and disappear. An asymmetric, Seneca-like collapse, indeed.

We also have some quantitative data on the Empire's cycle. For instance, look at this image from Wikipedia.





It shows the size of the Roman military over the Empire's span of existence. WIth all the uncertainties involved, also this image shows a typical "Seneca" shape for both the Western and the Eastern parts of the Empire. Decline is faster than growth, indeed.

There are other indicators that we can consider about the collapse of the Roman Empire. In many cases, we don't have sufficient data to say much, but in some, we can say that collapse was, indeed, abrupt. For instance, you can give a look to a well known image taken from Joseph Tainter's book "The Collapse of Complex Societies"



The figure shows the content of silver in the Roman "denarius" which by the 3rd century AD, had become pure copper. Note how the decline starts slow, but then goes on faster and faster. Seneca himself would have understood this phenomenon very well.


So, the Roman Empire seems to have been hit by a "Seneca collapse" and that tells us that the occurrence of this kind of rapid decline may be commonplace for the entities we call "civilizations" or "empires".

It is also true, however, that the Roman collapse was far from being smooth. It went through periods of apparent stability, interrupted by periods of extremely fast descent. The chroniclers of the time described these periods of crisis, but none of them seem to have connected the dots: they never saw that each crisis was linked to the preceding one and leading to the next one. Punctuated collapse seemed to be invisible to the ancient Romans, just as it is for us, today.


Wednesday, March 13, 2013

The World is a Fountain

Originally published on Cassandra's legacy Wednesday, March 13, 2013



The world is complex, variegated, convoluted, multi-faceted, interconnected, complicated, circuitous, and more. And, yet, there is a logic in the way it works.

Look at the Trevi Fountain, in Rome, it is complex and variegated, but in the end there is a logic: water always goes down. It is physics: it is the gravitational potential that makes water move.

The same is true for the whole world. Lot's of things are going on, but there is a logic: energy goes down, it degrades, it is a chemical potential driven by the second law of thermodynamics.

So, no matter how complicated the Trevi Fountain is, water always goes down. No matter how complicated is the world, chemical potentials always "go down."

This is the idea at the basis of the paper that I published in "Sustainability", titled "Mind-Sized World Models." as part of a special issue dedicated to the 40th anniversary of "The Limits to Growth"

The term "mind-sized" comes from the ideas of Seymour Papert, who said that models should be simple enough to be understandable, if one has to act on them. On the basis of this idea, I tried to put together simple, "mind-sized", models which can still tell us something of the way the world works. World Models, in short.

So, I build these models as if they were multi-level fountains, one basin, two basins, three basins, and more.




Each basin represents a stock of energy, which is dissipated in steps, going from top to bottom (in energy terms). It is a concept that I already described in a post of mine titled "Entropy, Peak Oil, and Stoic Phylosophy" but that now I examined more in depth.

Now, imagine a multi-level fountain; imagine that it is dry at start. Then put some water in the top basin. It will go down, step by step, until it reach the bottom basin, and then disappear falling on the ground. It is, in the end, what we have been doing with fossil fuels; burning them until they disappear as they become atmospheric pollution.

Here is the model for the "three-level" fountain. It is the one that gives rise to the "Seneca Effect" (When things go wrong, they go wrong fast)


This is the model that originates the "Seneca Cliff" that we may also call "collapse" and that we may experience at some moment in the future.



My paper in "Sustainability" is "open access". Here is the link

Wednesday, June 13, 2012

Seneca's cliff goes iPad



originally published on Cassandra's Legacy on Wednesday, June 13, 2012


My post on the "Seneca cliff" has inspired Hannes Rollin to create an App for the iPad that can be used for running the model for different input parameters. I must confess that I don't own an iPad, so I can't test the model, but it seems to me a very interesting idea. So, here is the story, with many thanks for Hannes for his interest in my work.

Guest post by Hannes Rollin

Many of you who are reading this post may be familiar with one or the other of Ugo Bardi's mind-sized models, where he employs system dynamics to illustrate fundamental economic and natural processes in a general way. The model which impressed me the most was the one Ugo called Seneca's Cliff – a very simple model capable of generating an economic decline much faster than previous growth had been, a fact already remarked by Seneca. Hence the name.

I give you a quick summary of the model. You have three stocks (imagine them as containers), namely Resources, Economy and Pollution. Now, a given fraction of Resources is extracted and used to run the Economy. Subsequently, a fraction of the Economy spawns Pollution. The flow is furthermore dependent upon degradation or restoration (negative degradation) of each stock. If you ever asked yourself where the nice curves come from, here is the answer: The content of the stocks is plotted against time.

Ugo tweaked the parameters to give a Resource depletion and Economic activity curve very similar to one of the more famous outputs of the WORLD3 model of the Limits to Growth team. I have set this result as the default settings of the iPad app.


The interesting thing is that the model can evolve scenarios quite distinct from the standard run above. If you model a renewable Resource stock with negative resource loss rate, you get a (potentially infinite) sequence of boom-and-bust cycles similar to H.T. Odum's simulation of locust pests.



Although this run looks catastrophic as well with long periods of almost zero economic activity, it already maintains two highly optimistic assumptions: First, resources are strictly renewable no matter how much strained, and second, that pollution (gray), which spikes sharply according to the initial economic peak, is handled completely by natural self-repair.

It is even possible to create something like a steady-state economy, a slightly meandering stream of low but positive activity. When you play with the app, however, you will see that combinations of parameters leading to such favorable circumstances are hard to find, and the solution is highly unstable – wiggle any slider in any direction, and you are quickly back to extinction or boom-and-bust.


Note that in this run high growth is followed by rapid decline and finally zero
growth (brown). The steadiness of the Economy has its price: economic activity is pretty low compared to the once-in-a-lifetime peak at the beginning, and the Resource stock never again reaches its initial wealth due to continual harvesting. The are many more scenarios this simply excellent model can provide, for instance two or three consecutive peaks of activity, increasing or decreasing, followed by die-off (stable solution) or steadiness (unstable solution).

As an apology, I am certainly aware of the irony of porting a model for the simulation of economic decline to the flagship of techno-narcissistic consumerism, klickibunti self-distraction, and perpetual remote controlling of human resources. But, you know, the spirit speaks in many tongues. There is certainly something to gain by playing with the model rather than merely studying formulas or staring at static graphs. Just like the Pythagoreans presumably played with pebbles to gain a feeling for the relation between triangles and squares, you may develop a feeling for the precariousness of stability and, perhaps, understand how inevitable and fierce a destiny is able to fulfill itself.

This said, I would only wish to add that the app is, of course, free, and anyone who wants to learn the background or extend the model is invited to mail me (Hannes Rollin) at initials at sabik dot de. The Seneca cliff App has recently been approved to App.