The Roman Philosopher Lucius Anneaus Seneca (4 BCE-65 CE) was perhaps the first to note the universal trend that growth is slow but ruin is rapid. I call this tendency the "Seneca Effect."
Showing posts with label Ilaria Perissi. Show all posts
Showing posts with label Ilaria Perissi. Show all posts

Thursday, October 20, 2022

The Empty Sea -- An Ongoing Saga

 



"The Empty Sea," a Report to the Club of Rome by Ugo Bardi and Ilaria Perissi, was translated into Chinese and published in China at the end of September of this year. As a comment to this new version of the book, I am reproducing here, with the kind permission of the author, a post by Coty Perry that deals with the same basic problems that the book describes. How the marine ecosystem is being damaged by human activities. Will it survive? It is part of an ongoing saga that sees humans killing everything on this planet without realizing that, in doing that, eventually they will be killing themselves

For those of you who can't read Chinese, the English version of the book is available on Springer's site. A version in Italian is also available at this link
 



Overfishing, Conservation, Sustainability, and Farmed Fish

As with many other aspects of government policy, overfishing and other fishing-related environmental issues are a real problem, but it’s not clear that government intervention is the solution. Indeed, it might be one of the main drivers of overfishing and other conservation and sustainability issues stemming from commercial fishing. Much like drone fishing, there are serious ethical issues of interest to the average angler. 

There’s another commonality that overfishing has with environmental issues more broadly: The Western companies primarily concerned with serious efforts to curb overfishing are not the ones who are most guilty of overfishing. What this means is that the costs of overfishing are disproportionately borne by the countries least engaged in practices that are counter to efforts to make commercial fishing more sustainable while also promoting conservation of fish biodiversity. 

All of these are important issues not just for commercial fishermen, but also those interested in questions of conservation and sustainability in general, as well as recreational fisherman and basically anyone who uses fish as a food source. As the ocean goes, so goes the planet, so it is of paramount importance for everyone to educate themselves on what is driving overfishing, what its consequences are, and what meaningful steps — not simply theater to feel as if “something is being done” — can be taken.

Indeed, over three billion people around the world rely on fish as their primary source of protein. About 12 percent of the world relies on fisheries in some form or another. 90 percent of these being small-scale fishermen — “think a small crew in a boat, not a ship,” using small nets or even rods, reels and lures not too different from the kind you probably use.

Overfishing infographic - "90% fisheries small-scale fishermen, 12% world population relies upon fisheries"

There are 18.9 million fishermen in the world, with 90 percent of them falling under the same small-scale fisherman rubric discussed above. 

Overfishing Definition: What is Overfishing?

Overfished ocean

First, take heart: As a recreational fisherman you are almost certainly not guilty of “overfishing.” This is an issue for commercial fishermen in the fishing industry who are trawling the ocean depths with massive nets to catch enough fish to make a living for themselves and their families, not the angler who enjoys a little peace and quiet on the weekends. 

Overfishing is, in some sense, a rational reaction to increasing market needs for fish. Most people consume approximately twice as much fish as they did 50 years ago and there are four times as many people on earth as there were at the close of the 1960s. This is one driver of the 30 percent of commercially fished waters being classified as “overfished.” This means that the stock of available fishing waters are being depleted faster than they can be replaced.

There is a simple and straightforward definition of when an area is being “overfished” and it’s not simply about catching “too many” fish. Overfishing occurs when the breeding stock of an area becomes so depleted that the fish in the area cannot replenish themselves. 

Overfishing infographic "> 80% fish caught in nets"

At best, this means fewer fish next year than there are this year. At worst, it means that a species of fish cannot be fished out of a specific area anymore. This also goes hand-in-hand with wasteful forms of fishing that harvest not just the fish the trawler is looking for, but just about every other organism big enough to be caught in a net. Over 80 percent of fish are caught in these kinds of nets but fish aren’t the only things caught in nets.

What’s more, there are a number of wide-reaching consequences of overfishing. It’s not simply bad because it depletes the fish stocks of available resources, though that certainly is one reason why it’s bad. Others include:

  • Increased Algae in the Water: Like many other things, algae is great but too much of it is very bad. When there are fewer fish in the water, algae doesn’t get eaten. This increases the acidity in the world’s oceans, which negatively impacts not only the remaining fish, but also the reefs and plankton.
  • Destruction of Fishing Communities: Overfishing can completely destroy fish populations and communities that once relied upon the fish that were there. This is particularly true for island communities. And it’s worth remembering that there are many isolated points on the globe where fishing isn’t just the driver of the economy, but also the primary source of protein for the population. When either or both of these disappear, the community disappears along with it.
  • Tougher Fishing for Small Vessels: If you’re a fan of small business, you ought to be concerned about overfishing. That’s because overfishing is mostly done by large vessels and makes it harder for smaller ones to meet their quotas. With over 40 million people around the world getting their food and livelihood from fishing, this is a serious problem.
  • Ghost Fishing: Ghost fishing refers to abandoned man-made fishing gear that is left behind. It’s believed that an estimated 25,000 nets float throughout the Northeast Atlantic. This left behind gear becomes a death trap for all marine life that swim through that area. While much of this is caused due to storms and natural disasters, much of it is the result of ignorance and neglect on behalf of commercial fishermen.
  • Species Pushed to Near Extinction: When we hear that a fish species is being depleted, we often think it’s fine because they can be found somewhere else. However, many species of fish are being pushed close to extinction by overfishing, such as several species of cod, tuna, halibut and even lobster.
  • Bycatch: If you’re old enough to remember people being concerned about dolphins caught in tuna nets, you know what bycatch is: It’s when marine life that is not being sought by commercial fishermen is caught in their nets as a byproduct. The possibility of bycatch increases dramatically with overfishing.
  • Waste: Overfishing creates waste in the supply chain. Approximately 20 percent of all fish in the United States is lost in the supply chain due to overfishing. In the Third World this rises to 30 percent thanks to a lack of available freezing devices. What this means is that even though there are more fish being caught than ever, there is also massive waste of harvested fish.
  • Mystery Fish: Because of overfishing, there are a significant amount of fish at your local fish market and on the shelves of your local grocery store that aren’t what they are labelled as. Just because something says that it’s cod doesn’t mean that it actually is. To give you an idea of the scope of this problem, only 13 percent of the “red snapper” on the market is actually red snapper. Most of this is unintentional due to the scale of fishing done today, but much of it is not, hiding behind the unfortunate realities of mass scale fishing to pass off inferior products to unwitting customers. 
Overfishing infographic - "fish in the Third World lost in the supply chain..."

So why is overfishing happening? There are a variety of factors driving overfishing that we will delve into here, the bird’s eye view is below.

  • Regulation: Regulations are incredibly difficult to enforce even when they are carefully crafted, which they often are not. The worst offenders have little regulations in place and none of these regulations apply in international waters, which are effectively a Wild West.
  • Unreported Fishing: Existing regulations force many fisherman to do their fishing “off the books” if they wish to turn a profit. This is especially true in developing nations.
  • Mobile Processing: Mobile processing is when fish are processed before even returning to port. They are canned while still out at sea. Canned fish is increasingly taking up the fish consumption market at the expense of fresh fish.
  • Subsidies: Anyone familiar with farm subsidies knows that these are actually bad for the production of healthy food. Subsidies for fishing are similar. They don’t generally go to small fisherman whom one would think are most in need, but rather to massive vessels doing fuel-intensive shipping. 

What’s more, subsidies encourage overfishing because the money keeps flowing no matter what — the more fish you catch, the more money you get, with no caps influenced by environmental impact fishing regulation. 

Indeed, according to the World Wildlife Fund, subsidies drive illegal fishing, which is closely tied with piracy, slavery and human trafficking. The University of British Columbia conducted a study that found that $22 billion (63 percent of all fishing subsidies) went toward subsidies that encourage overfishing. 

Of these, the main driver of overfishing is, predictably, government subsidies. So it is worth taking a few minutes to separate that out from the rest of these issues and give it some special attention. 

More on Overfishing and Government Subsidies

Overfishing - "Fishing boats on the water with asian writing on the sides"

The subsidies that drive overfishing are highly lucrative: The governments of the world are giving away over $35 billion every year to fishermen. That’s about 20 percent of the value of all the commercially caught fish in the world every year. Subsidies are often directed at reducing the costs for megafishing companies — things like paying for their massive fuel budgets, the gear they need to catch fish, or even the vessels themselves. 

This effectively allows for large commercial fishing operations to take over the market or recapitalize at rates significantly below that of the market, disproportionately favoring them over their smaller competitors. 

It is this advantage that drives large mega fishing companies into unsustainable fishing practices. The end result of this is not just depleted stocks, but also lower yields due to long-term overfishing, as well as lowered costs of fish at market, which has some advantages for the consumer, but also makes it significantly harder for smaller operations to turn a profit. 

Such government subsidies could provide assistance to smaller fishermen, but are generally structured in a way that favors consolidation of the market and efforts counterproductive to conservation efforts. 

What Role Do Farmed Fish Play?

Farmed fish is a phenomenon that we take for granted today, but is actually a revolutionary method of bringing fish out of the water and onto our dinner tables. Originally, it was seen as a way of preserving the population of wild fish. The thinking was this: We could eat fish from fish farming while the wild stock replenished itself. 

At the same time, communities impacted by overfishing would find new ways to get income in an increasingly difficult market. Third world countries would have their protein needs met in a manner that did not negatively impact the environment. It was considered a big, easy win for the entire world. 

The reality, as is often the case, turned out to be a little different. Crowding thousands of fish together in small areas away from their natural habitat turns out to have a number of detrimental effects. Waste products, primarily fish poop, excess food and dead fish, begin to contaminate the areas around fish farms. What’s more, like other factory farms, fish farms require lots of pesticides and drugs thanks to the high concentrations of fish and the parasites and diseases that spread in these kinds of areas. 

Predictably, the chemicals used in making farmed fish possible are not contained in the areas where they are initially used. They spread into the surrounding waters and then simply become part of the water of the world, building up over time. In many cases, farmed fish are farmed in areas that are already heavily polluted. This is where the admonition to avoid eating too much fish for fear of contaminants like mercury has come from.

What’s more, the fish that we eat are not the only fish that are living at the fisheries. Often times, the preferred fish of the human consumer are carnivores that must eat lots of other fish to get up to an appropriate size to be part of the market. These fish, known as “reduction fish” or “trash fish” require the same kind of treatment that the larger fish they feed do. 

All told, it takes 26 pounds of feed to produce a single pound of tuna, making farmed fishing an incredibly inefficient way of bringing food to market. Indeed, 37 percent of all seafood globally is now fed for farmed fish, up dramatically from 7.7 percent in 1948. 

Overfishing infographic "26 pounds of feed = 1 pound of tuna"

Perhaps worst of all, farmed fish simply do not have the same nutritional value as their wild counterparts, losing almost all of the Omega-3 fatty acids that make fish such a prized part of the modern diet. 

Salmon, for example, is only healthy when it is caught in the wild. Farmed salmon is essentially a form of junk food. This is in large part due to the diet that the fish eat in fish farms, which is high in fat and uses soy as a primary source of protein. Toxins at the farms concentrate in the fatty tissue of the salmon. Concentrations of the harmful chemical PCB are found in concentrations eight times higher in farmed fish than traditionally caught wild salmon.

 Farmed fish

The pesticides, of course, are not used for no reason, but because of the proliferation of pests due to the high concentrations of fish in the fisheries. Sea lice are one example of such pests, which can eat a live salmon down to the bone. 

These pests do not stay in the fisheries, but quickly spread to the surrounding waters and infect wild salmon as well as their farmed counterparts. The pests aren’t the only ones escaping: Farmed fish often escape from their habitats and compete with the native fish for resources, becoming an invasive species. 

Subsidies vary from one country to another and specific statistics about how much goes to fish farms is generally not forthcoming. But fish farms effectively move the problem of overfishing from the wild oceans and into more enclosed areas. This does not solve any of the problems of overfishing. It merely creates new ones with no less impact on the environment. 

Which Countries Are Overfishing?

Countries that are overfishing

As stated above, the main offenders with regard to overfishing tend to not be developed Western countries, but countries from the undeveloped world and parts of Asia. Sadly, the United States is the only Western nation that appeared on a “shame list” put out by Pew Charitable Trusts. This is known as the Pacific Six. The other members include Japan, Taiwan, China, South Korea and Indonesia. 

Overfishing infographic - "80% world's bluefin tuna"

The list only refers to overfishing with regard to bluefin tuna, but it provides a snapshot of the face of overfishing internationally. Overfishing facts say that these six countries are fishing 80 percent of the world’s bluefin tuna. These countries took collectively 111,482 metric tons of bluefin tuna out of the waters in 2011 alone. 

However, when it comes to harmful subsidies there is a clear leader: China. A University of British Columbia study found that China provided more in the way of harmful subsidies encouraging overfishing than any other country on earth — $7.2 billion in 2018 or 21 percent of all global support. What’s more, subsidies that are more beneficial than harmful dropped by 73 percent.

Overfishing infographic " 111,482 tons of bluefin tuna in 2011"

The negative effects of overfishing are not taking place far away and in very abstract ways. They are causing communities right here in the United States to collapse. In the early 1990s, overfishing of cod caused entire communities in New England to collapse. Once this happens, it is very difficult to reverse. The effects are felt by the marine ecosystem but also by the people whose livelihoods depend on fishing. 

Another example of economic instability is the Japanese fish market. Japanese fishermen are able to catch far less fish than they used to, meaning that the Japanese are now eating more imported fish, often from the United States, than ever before. This creates a perverse situation where America exports most of its best salmon to other countries, but consumes some of the worst farmed salmon in the world today. 

Just How Bad Is Overfishing?

Surely overfishing can’t be that bad, right? The seas are just filled with tons of fish and it would take us forever to overfish to the point that they began to disappear entirely, right?

Fish on dry land

Think again. Overfishing is happening at biologically unsustainable levels. Pacific bluefin tuna, the type of fish discussed in the section above, has seen a 97 percent decline in overall population. This is important because the Pacific bluefin tuna is one of the most important predators in the ocean food chain. If it goes extinct the entire aquaculture will be irreparably disturbed. 

The first fish that disappear from an ecosystem are larger fish with a longer lifespan and reach reproductive age later in life. These are also the most desirable fish on the open market. When these fish disappear, the destructive fishing operations do not leave the area: They simply move down the food chain to less desirable catches like squid and sardines. This is called “fishing down the web” and it slowly destroys the entire ecosystem removing first the predator fish and then the prey. 

There are broader effects on the ecosystem beyond just the fish, effects that resonate throughout the entire Atlantic and Pacific ocean. Many of the smaller fish eat algae that grows on coral reefs. When these fish become overfished, the algae grows uncontrolled and the reefs suffer as a result. That deprives many marine life forms of their natural habitat, creating extreme disruption in the ocean ecosystem. 

What Are Some Alternatives to Government-Driven Overfishing?

Protecting fish

While there are certainly policy solutions to rampant overfishing, not all solutions will come from governments. For example, there are emerging technological solutions that will make by catching and other forms of waste less prevalent and harmful. 

Simple innovations based on existing technologies, such as Fishtek Marine seek to save sea mammals from the nets of commercial fishermen while also increasing profit margins for these companies in a win-win scenario. Their device is small and inexpensive and thus does not present an undue burden to either the large-scale commercial fishing vessels or small fishermen looking to eke out a living in an increasingly difficult market. 

We must also recognize that current regulations simply do not work. In one extreme case, governments restricted fishing for certain forms of tuna for three days a year. This did absolutely nothing for the population of tuna, as the big commercial fishing companies simply employed methods to harvest as many fish in three days as they were previously getting in any entire year. 

This, in turn, led to a greater amount of bycatch and waste. Because the fishing operations didn’t have the luxury of time to ensure that they were only catching what they sought to catch, their truncated fishing season prized quantity over quality with predictable results. 

Quotas, specifically the “individual transferable quota” scheme used by New Zealand and many other countries does not seem to work as intended for a number of reasons. First, these quotas are, as the name might suggest, transferable. This means that little fishermen might consider it a better deal to simply sell their quota to a large commercial fishing operation rather than go to work for themselves and we’re back to square one. 

More generally speaking, quotas seem to be a source of waste. Here’s how they work: A fishing operation is given a specific tonnage of fish from a specific species that they can catch. However, not all fish are created equally. So when commercial fishing operations look at their catch and see that some of it is of higher quality than others, they discard the lower-quality fish in favor of higher-quality fish creating large amounts of waste. These discards can sometimes make up 40 percent of the catch. 

An alternative to the current system is one that balances the need for fish as a global protein source with a long-term view of the ecosystem, planning for having as many fish tomorrow as there are today and thus, a sustainable model for feeding the world and providing jobs. One way to do this would be to tie subsidies to conservation and sustainability efforts, rather than simply writing checks to large commercial fishing operations to build new boats and buy new equipment. Such a scheme would also prize smaller scale operations over larger ones. A more diversified source of the world’s fish would also be more resilient. 

One such alternative is called territorial use rights in fisheries management (TURF). In this case, individual fishermen or collectives of them are provided with long-term rights to fish in a specific area. This means that they have skin in the game. They don’t want to overfish the area because to do so would be to kill the goose that laid the golden egg. So they catch as many fish as is sustainable and no more. They have a vested, long-term interest in making sure that there is no overfishing in the fisheries that have been allotted to them. 

Not only does this make sustainable fishing more attractive, it also means that there is less government bureaucracy and red tape involved. Fishermen with TURF are allowed to catch as much as they like. It is assumed that sustainability is baked into the equation because the fishermen with rights want to preserve the fishing not just for the next year, but for the next generation and the one after that. This model has been used successfully by Chile, one of the most economically free countries in the world (more economically free, in fact, than the United States), to prevent overfishing and create sustainability. It is a market-driven model that prizes small producers with skin in the game over massive, transnational conglomerates with none. 

Belize, Denmark, and even the United States are other countries that have used TURF, with significantly positive results. While it’s nice to support the little guy over Big Fishing and we certainly support sustainability and conservation efforts, there’s another, perhaps more important and direct reason to support reforms designed to eliminate overfishing: food security. When bluefin tuna, for example, goes extinct, it’s not coming back. That means no more cans of tuna on the shelves of your local supermarket. 

That’s a big deal for people in developed, first-world countries, but a much bigger deal in developing countries. When major protein sources are depleted forever, there will be intensified competition for the resources that remain. This also creates unrest in the countries that are less able to compete in a global market due to issues of capital and scale. Even if you’re not concerned with overfishing, overfishing and the problems it creates will soon be on your doorstep unless corrective measures are taken before it’s too late.






Monday, November 22, 2021

The Mousetrap Experiment: Modeling the Memesphere

 Reposted with some modifications from "The Proud Holobionts"

 Ilaria Perissi with our mousetrap-based mechanical model of a fully connected network. You can find a detailed description of our experiment on ArXiv


You may have seen the "mousetrap experiment" performed as a way to demonstrate the mechanism of the chain reaction that takes place in nuclear explosions. One of its earliest versions appeared in Walt Disney movie "Our Friend, the Atom" of 1956. 


We (myself and Ilaria Perissi) recently redid the experiment with 50 mousetraps and 100 wooden balls. And here it is. It was fun, except when (and not so rarely) one of the traps snapped on our fingers while we were loading it.

But why bother redoing this old experiment (proposed for the first time in1947)? One reason was that nobody had ever tried a quantitative measurement. That is, measuring the number of triggered traps and flying balls as a function of time. So, we did exactly that. We used cell-phone slow motion cameras to measure the parameters of the experiment and we  a system dynamics model to fit the data. It worked beautifully. You can find a pre-print of the article that we are going to publish on ArXiv. As you can see in the figure, below, the experimental data and the model go reasonably well together. It is not a sophisticated experiment, but it is the first time that it was attempted.



But the main reason why we engaged in this experiment is that it is not just about nuclear reactions. It is much more general and it describes a kind of network that's called "fully connected," that is where all nodes are connected to all other nodes. In the set-up, the traps are nodes of the network, the balls are elements that trigger the connection between nodes. It is a kind of communication based on "enhanced" or "positive" feedback.

This experiment can describe a variety of systems. Imagine that the traps oil wells. Then, the balls are the energy created by extracting the oil. And you can use that energy to dig and exploit more wells. The result is the "bell shaped" Hubbert curve, nothing less!  You can see it in the figure above: it is the number of flying balls "produced" by the traps.

We found this kind of curve for a variety of socioeconomic system, from mineral extraction to fisheries (for the latter, you can see our (mine and Ilaria's) book "The Empty Sea." So, the mousetraps can describe also the behavior of fisheries and have something to do with the story of Moby Dick as told by Melville.

You could also say the mousetrap network is a holobiont because holobionts are non-hierarchical networks of entities that communicate with each other. It is a kind of holobiont that exists in nature, but it is not common. Think of a flock of birds foraging in a field. One bird sees something suspicious, it flies up, and in a moment all the birds are flying away. We didn't have birds to try this experiment, but we found a clip on the Web that shows exactly this phenomenon.

It is a chain reaction. The flock is endowed with a certain degree of intelligence. It can process a signal and act on it. You can see in the figure our measurement of the number of flying birds. It is a logistic function, the integral of the bell-shaped curve that describes the flying balls in the mousetrap experiments



In Nature, holobionts are not normally fully connected. Their connections are short-range, and signals travel more slowly through the network. It is often called "swarm intelligence" and it can be used to optimize systems. Swarm intelligence does transmit a signal, but it doesn't amplify it out of control, as a fully connected network does, at least normally. It is a good control system: bacterial colonies and ant colonies use it. Our brains much more complicated: they have short range connections but also long range ones and probably also collective electromagnetic connections. 

One system that is nearly fully connected is the world wide web. Imagine that traps are people while the balls are memes. Then what you are seeing with the mousetrap experiment is a model of a meme going viral in the Web. Ideas (also called memes) flare up in the Web when they are stimulated it is the power of propaganda that affects everybody.

It is an intelligent system because it can amplify a signal. That is that's the way it reacts to an external perturbation. You could see the mousetraps as an elaborate detection system for stray balls. But it can only flare up and then decline. It can't be controlled. 

That's the problem with our modern propaganda system: it is dominated by memes flaring up out of control. The main actors in this flaring are those "supernodes" (the Media) that have a huge number of long-range connections. That can do a lot of damage: if the meme that goes out of control is an evil meme and it implies, say, going to war against someone, or exterminating someone. It happened and keeps happening again as long as the memesphere is organized the way it is, as a fully connected network. Memes just go out of control.

All that means we are stuck with a memesphere that's completely unable to manage complex systems. And yet, that's the way the system works. It depends on these waves of out-of-control signals that sweep the web and then become accepted truths. Those who manage the propaganda system are very good at pushing the system to develop this kind of memetic waves, usually for the benefit of their employers. 

Can the memesphere be re-arranged in a more effective way -- turning it into a good holobiont? Probably yes. Holobionts are evolutionary entities that nobody ever designed. They have been designed by trial and error as a result of the disappearance of the unfit. Holobionts do not strive for the best, they strive for the less bad. It may happen that the same evolutionary pressure will act on the human memesphere. 

The trick should consist in isolating the supernodes (the media) in such a way to reduce their evil influence on the Web. And, lo and behold, it may be happening: the great memesphere may be rearranging itself in the form of a more efficient, locally connected holobiont.  Haven't you heard of how many people say that they don't watch TV anymore? Nor they open the links to the media on the Web. That's exactly the idea. Do that, maybe you will start a chain reaction in which everyone will get rid of their TV. And the world will be much better. 




Thursday, April 29, 2021

The Future of the Oceans: The two Souls of the Club of Rome

 


I was very happy when I finally managed to find a copy of the old report to the Club of Rome, "The Future of the Oceans" by Elizabeth Mann Borgese. A book published in 1986, one of a long series of reports that the Club commissioned to various scientists and researchers. And the only one, so far, that dealt with marine resources. Not so easy to find: I finally managed to dig out a used copy from an obscure bookstore in Michigan. But, eventually, it arrived here.

Of course, my interest in that old book was generated by having written a report on marine resources myself, "The Empty Sea," together with my coworker Ilaria Perissi (you see her with our book in the photo.) So, how do these two books compare, at 35 years of distance from each other?

I must say that I was surprised. Our book can be defined as a little catastrophistic: just the title should tell you what I mean. The one by Elizabeth Mann Borgese, instead, is completely different in tone, approach, and contents: you could define it as cornucopian. The first part of the book is dedicated to describing the abundance of the resources that the oceans contain, the second and third part are dedicated to how the international community was going to develop a "common heritage economics," and about treaties, regulations, and laws needed to manage the exploitation of these riches for the good of all humankind. 

Leaving aside for a moment the question of who is right and who is wrong, you may be just as surprised as I was to discover that the Club of Rome could sponsor two books that took such a different approach on the same subject. Actually, though, it is not so surprising if you know something about the history of the Club. 

The origins of the Club of Rome are in themselves a fascinating subject. Today, everyone associates the Club to their 1972 report "The Limits to Growth." A book that was not so pessimistic as it is often described, but that you surely wouldn't call cornucopian. It was the first study in history that quantified the limits to natural resources at the planetary level. It arrived to the conclusion that the growth of the global economy would come to a halt and start declining at some moment during the first decades of the 21st century (BTW, we are there right now!). 

But how did the Club arrive at the idea of producing such a report? The story is nuanced and it has to do with the personality of Aurelio Peccei, the founder of the Club in 1968. Peccei was a person that you would define as "enlightened" in the sense that he was deeply concerned about the future of humankind. But in the 1960s, not only it was not known what the limits to the natural resources could be; it wasn't even clear that such a limit existed. 

So, as you can read in the books he authored, Peccei was far from being a "catastrophist," and he didn't see depletion as an important point in his vision of the world. His main concern was how to ensure that the world's resources were fairly distributed. The 1972 report was commissioned to a group of MIT researchers with the aim of quantifying the available resources in order to plan for their fair exploitation. Peccei, basically, wanted to know how large the cake was before starting to cut slices out of it. 

Peccei, just as other members of the Club, must have been surprised by the results that "The Limits to Growth" reported. Nevertheless, they understood their importance and adopted them as part of the Club's views. But the earlier idea, the one that saw distribution as more important than exploitation, didn't disappear and it remained part of the way of thinking of many members of the Club, including Peccei himself. And there is a logic in that: abundant resources, even if they existed, would be useless if they were not used for the benefit of everybody. And that is an even more pressing necessity if the results are, instead, scarce. 

Now you can understand the line of thought that led Elisabeth Mann Borgese to write the book "The Future of the Oceans" It was part of the more optimistic section of the way of thinking of the Club of Rome that never was a monolithic think tank (and it is good that it wasn't, and that it isn't). 

So, what made Mann Borgese so optimistic? And are her views still valid, today? Here, unfortunately (and perhaps unavoidably), most of the book didn't stand the test of time. Elisabeth Mann Borgese (1918 - 2002) is a very interesting and multifaceted personality: the daughter of novelist Thomas Mann, she was engaged in many fields: psychology, law, anthropology, and even writing science fiction. Among other things, she was the first female member of the Club of Rome and the only one for several years. But compared to the earlier "Limits to Growth" report, she had a very different approach  to the evaluation of the oceans' potential in producing food and minerals.

So, the first two chapters of "The Future of the Oceans" are, well, as a euphemism, I could say that they are a little outdated. The year before, in 1985, Elisabeth Mann Borgese had written another book titled "The Mines of Neptune," dedicated to mineral resources from the sea. I still have to read that book, but its conclusions are summarized in "The Future of Oceans"in the section titled "Ocean Mining." 

Here, Mann Borgese was clearly influenced by one of the periodic waves of technological optimism that sweep the memesphere about the possibility of extracting minerals from the sea. So optimistic that she even says that these minerals are "renewable" because they are continuously replaced by the volcanic activity at oceanic ridges. Alas, that's really too optimistic. 

I wrote about that subject in a paper that I published in 2010. Basically, it is easy to be led astray by the huge numbers associated to marine resources, but if you do an energy analysis, you see that the costs of extraction are outside the realm of practical possibilities. That's why people have been discussing about that for decades but, today, we are still extracting only those minerals that our ancestors extracted centuries ago, mainly sodium chloride, table salt. Minerals from the sea are like minerals from the Moon or from the asteroids: an incredible abundance that always remains decades in the future.

Something similar in terms of excessive optimism can be said about the chapter dedicated to aquaculture, but here Mann Borgese did identify the remarkable growth potential of a technology that has been, indeed, growing at a bewildering speed: think of a growth of 527% from 1990 to today  (!!) and you will be impressed. A lot. Nowadays, aquaculture produces an amount of food that compares with that produced by conventional fishing. 

So, Mann-Borgese was right on aquaculture, but was that development a good thing? What she missed is that farmed fish is fed mainly from wild fish, so when you sum the production of the two industries you count the same food twice. And the damage done to aquaculture to the environment is gigantic, as we discuss in detail in our book, "The Empty Sea.

The other two sections of "The Future of the Oceans" are a complex story that would need an in-depth discussion. I am not an expert in economics or international law, so I won't attempt to do that. I can just say that I have the impression that much of what was said in the 1980s on this subject was very optimistic. Over the years, the world of fishing became much more competitive, and the various actors engaged in the effort became much less interested in sharing a scarce result and engaged in defending it aggressively, even by military means

So, that's the story of this book. Even though it didn't stand so well the test of time, it is still a remarkable book. Part of the human effort to live in harmony on a planet that's becoming smaller and poorer every day. And, after all, in half a century from now, how many of the books that we are writing today will have passed the test of time?