The Roman Philosopher Lucius Anneaus Seneca (4 BCE-65 CE) was perhaps the first to note the universal trend that growth is slow but ruin is rapid. I call this tendency the "Seneca Effect."

Monday, May 24, 2021

The Great Turning Point for Humankind: What if Nuclear Energy had not been Abandoned in the 1970s?

  The Italian translation of Walt Disney's book, "Our Friend, the Atom," originally published in 1956. It was a powerful pitch of the nuclear industry to sell a completely new energy system to the world. It could have been a turning point for humankind, but it didn't work: nuclear energy was abandoned in the 1960s-1970s. It was probably unavoidable: too many factors were staked against the nuclear industry. But we may wonder about what could have happened if it had been decided to pursue nuclear energy and abandon fossil energy. (In the background: a completely different concept, that of "holobionts,")


I remember having read Walt Disney's book, "Our Friend, the Atom," (1957) in the 1960s when I was, maybe, 10 years old. That book left a powerful impression on me. Still today, when I visualize protons and electrons in my mind, I see them in the colors they were represented in the book: protons are red, electrons are blue or green. And I think that one of the reasons why I decided to study chemistry at the university was because of the fascinating images of the atomic structure I had seen in the book.

More than 60 years after its publication, "Our Friend the Atom" remains a milestone in the history of nuclear energy. You can easily find on the Web the Disneyland TV episode from which the book was derived. It is still stunning today in terms of imagery and sheer mastery of the art of presentation. The nuclear industry was in rapid expansion and it saw itself as able to grow more. Hence, a pitch for the "Atomic Age" that would have brought cheap and abundant energy for everyone, perhaps even energy that was "too cheap to meter." 

It didn't work. You see in the figure the number of new reactors installed worldwide. It peaked around 1970, and plans to build new reactors must have been declining earlier than that. Already in the 1960s, the enthusiasm for nuclear energy was falling, a trend that would last until now, despite some recent signs of a possible restart. (image from Univ. Texas)

What went wrong? Today, the whole story is usually dismissed as the result of the machinations of those evil Greens who had opposed nuclear energy for ideological reasons. Yet, the popular "smiling sun" campaign didn't become widespread before the late 1970s, when the nuclear industry was already in free fall. Never in their history, the Greens had been able to stop an industrial field that was making money. Why should they have been so successful with the nuclear industry? (by the way, with a campaign that started at least a decade after that the intended target had begun its decline. Those damn Greens even had time machines!)

Reviewing this old story, we see that the smiling sun campaign was not the cause, but a symptom of the troubles that the nuclear industry was facing. Up until the 1950s, the industry had prospered almost exclusively in the military market, producing mainly nuclear warheads. The production of electric power for the civilian market was a side job, just like the production of isotopes for research and for medical applications. The problem was that warheads were being stockpiled in absurd numbers, well beyond the reasonable needs (if we want to use that term) of national defense. 

It must have been clear already in the 1950s that the industry was saturating its market. The only solution to stimulate the demand was to start an actual nuclear war. Surely, it must have been considered but, fortunately, not everyone agreed on that idea. 

But where to find new markets for the nuclear industry? With already so many nuclear weapons around, a possible solution was to move into the civilian market and to expand outside the US national boundaries. In the 1950s, the US engaged in a program that started with the speech by President Eisenhower known as "Atoms for Peace" in 1953. The idea was to disseminate nuclear technology all over the world as a way to produce energy and other useful products. Walt Disney's 1956 movie was an offshoot of this program.

Seen in retrospective, the "Atoms for Peace" program couldn't possibly have worked, and it didn't. The nuclear industry faced a series of hurdles, each one sufficient to stop its growth, alone. All together, they were truly too much. Here is a list.

1. A mineral resource problem. In the 1950s, it was already known (*) that the mineral reserves of fissile uranium, the 235 isotope, were insufficient for nuclear plants to take over the task of energy production worldwide. That could have been possible only by means of the new and scarcely tested technology of "breeding." A few attempts were made to build commercial breeding reactors, but they were victims of the general rule that everything always costs more and takes more time. Gradually, the funds needed to keep developing the technology dried out and the efforts stopped. The best known of these reactors, the French "Superphenix" was closed in 1996, but it was clear much earlier that it had not been a success. No breeders, no atomic age.

2. A pollution problem. In the 1950s, nuclear waste was not seen as a major problem, but it was also clear that a substantial increase in the number of nuclear reactors would have created the necessity of doing something with the radioactive waste. And it started to be understood that dismantling the old nuclear reactors after the end of their life was a long and expensive task. Some of the waste would require centuries or millennia to become inoffensive. And, in all cases, the costs involved were huge and who was going to pay? The question was never answered at that time, and it remains unanswered today.

3. A commercial problem. Electrical energy from nuclear reactors always remained more expensive than the energy produced by gas or coal. So, the production of energy for the civilian market needed to be subsidized to be competitive. Up to 1977, subsidies were provided indirectly by the military industry with the purchase of the plutonium produced by the reactors, used to make nuclear warheads. These subsidies were abolished by president Carter in part because the US had already too many warheads, and in part to avoid the proliferation of fissile material. At this point, the industry was not any more competitive and who would invest money in a non-competitive industry? 

4. A competition problem. In the 1960s, the concept of "hydrogen economy" started becoming popular. For the nuclear industry, it seemed to be a good idea to claim that they could produce not only electric power, but also a fuel that could power vehicles. Unsurprisingly, that put the nuclear industry in direct competition with the fossil fuel industry. We know that everyone tends to defend their turf when it is threatened and we can't imagine that the fossil industry would supinely accept to be superseded. By the late 1970s, an aggressive public relations campaign based on the "smiling sun" symbol had turned nuclear power into everyone's bugaboo. Probably we will never know who financed that campaign, but we know who benefited from it.

5. A strategic problem. The idea of "atoms for peace" was complete nonsense in strategic terms. It just put the US in an impossible strategic quandary: how to stop nuclear proliferation while at the same time disseminating nuclear technologies all over the world? The solution was to quietly forget about atoms for peace while aggressively stopping the construction of nuclear reactors everywhere, especially in countries believed to be strategically unreliable. In 1981, the "Tammuz" reactor under construction in Iraq, near Baghdad, was destroyed by the Israeli air force. In 1987, a referendum against nuclear energy was held in Italy, a country believed to be at risk as an ally of the US because of the presence of a large Communist Party. The referendum forced the Italian government to dismantle four already built reactors and never to engage again in nuclear energy production. Iran continued the nuclear program that had been started with the "atoms for peace" program, but it was sabotaged at every step. From the 1980s onward, it became clear that not only nuclear weapons but also nuclear energy was something that belonged only to a selected club. 

 

You see that, as usual, when something must happen, you cannot stop it from happening. That the nuclear industry was to fail was written on the wall of the reactors because of a series of factual circumstances, surely not because a bunch of long-haired Greens were protesting in the streets. Yet, it is not impossible to think that history could have followed a different path. 

Imagine that the US military leaders had stomped their feet on the ground and said, "we are going to have breeders in America." Imagine that sufficient funds could have been funneled into the task. Finally, imagine that the technological problems of breeders could have been solved. At that point, the US and the whole Western World could have switched to a largely nuclearized energy system, possibly including a hydrogen-powered transportation system. It is unlikely that China and the Soviet Union would not have followed along the same path. And it would have been difficult to stop nuclear technology from diffusing in other regions of the world. It would have been the "Atomic Age" that was dreamed of in the 1950s.

What kind of world would that be, today? Theoretically, we would much more energy than we have today, at least for the elite countries that had embarked on the nuclearization of their economies. And this energy could be produced without emitting greenhouse gases into the atmosphere, so that Earth's climate would not have been affected, at least not directly.

But we would have faced a completely different range of problems. With the Atomic Age, the amount of fissile material available in the world would have been multiplied by one or two orders of magnitude and it is almost unthinkable that it would stay forever out of the hands of the many petty tyrants, fanatical religious leaders, and assorted psychopaths who tend to crave for that kind of things. 

Consider also that nuclear plants (especially breeders) offer a delicious target for military and terrorist attacks not just for their strategic value but also for the possibility of spreading radioactive material around and making large areas of the targeted territory uninhabitable. So, you may imagine what kind of problems we could have today. Even for a limited nuclear exchange, the "nuclear winter" scenario, proposed in the 1990s, implied a cooling period sufficiently long to exterminate most of humankind. The idea was heavily criticized, but never really debunked. And that without mentioning the possibility of the mismanagement of the nuclear wastes and the fact that plutonium is among the most poisonous substances known to humans.

Consider also another problem, much bigger, that lurks unrecognized in the shadows for the atomic age scenario. In the 1950s, Marion King Hubbert was working on oil depletion and in 1956 he proposed his famous "bell shaped" production curve, later known as "peak oil." Hubbert also proposed that nuclear energy would replace fossil fuels. But note in the figure below how, in his view, nuclear energy would not have prevented "peak oil" from taking place at about the same time that was foreseen without nuclear energy.  Hubbert understood very well that the enormous effort needed to build the new nuclear infrastructure would have had to be based on fossil fuels, and so would not have reduced their production.


Now, note something in the image: whereas fossil fuels follow a bell-shaped production curve, nuclear energy reaches a plateau and remains there for thousands of years. Why?

Hubbert must have been well aware that the "thousands of years of supply" that the nuclear industry often claimed for the mineral reserves of uranium were possible only if production were not to increase over a certain rate. But what would have stopped people from increasing energy production even more? You think that people would have been thinking, "now we have enough" and then spend their time relaxing? One world: pyramids. 

Why wouldn't Plutonium follow the same trajectory of oil, a "bell-shaped" curve, peaking and starting to decline afterward? (Want to mention thorium? Sure, but it is another finite resource, it doesn't change the concept). So, it would grow, peak, and then decline.

It is impossible to calculate when "peak plutonium" could take place in a fully nuclearized world. It would depend on many factors, the available resources, the efficiency of the breeding technology, the energy return on investment, the cost of waste management, and more. In a previous post, I made some very rough estimates: if the plutonium-based economy were to be run on the known laws of the economy, it is hard to imagine that the reserves of fissionable materials would last for more than a few centuries, possibly even less than a century. (Fusion? Sure, let's wait 50 more years and....).

And here we stand. Playing the "what if" game is a lot of fun, but we should remember that we are talking about the dream expressed by Walt Disney's "Our friend, the Atom," A dream that, likely, had the same chances to turn into reality as others proposed by Walt Disney, such as for a poor country girl to marry a prince. And it is not at all guaranteed that the country girl would have a happy marriage!

We don't know if a plutonium-based economy ever was something more than a dream. Today, it is too late to turn back to a moment in history that is past and gone, although it is not impossible that someone will want to try to resurrect a dream that could easily turn into a nightmare. 

What we know is that, as always, we stand at the intersection of past and future, in that fleeting moment we call "present." From now on, infinite possibilities branch out. Those leading to a peaceful and prosperous future are few, maybe there are none. But we must plod on. It is a journey that will lead us somewhere, even though we can't say where.


_________________________________________________________________

(*) The story of the assessment of the uranium reserves is fascinating in itself. Palmer Putnam published in 1953 the book "Energy in the Future" where he carried out one of the first quantitative assessments of the potential of fission energy in terms of mineral reserves of uranium  See below the relevant paragraph
 
 

 
 
Note the key words: "assuming breeding." That is, the assumption is that energy can be extracted from both isotopes of uranium, the 235 and the 238. The result is 1700 Quads, or about 100 times the energy content of the (then) known oil and gas reserves. 
 
You understand why in the 1950s it became obvious that breeding plutonium was absolutely necessary for a nuclear-based economy. If only U235 were to be "burned," then the resource would be suddenly reduced to 0.72% of the total, that is to 12 Quads. Assuming an optimistic 30% efficiency (but, really, way too optimistic), the total obtainable would be 4 Quads. Earlier on, Putnam had established that the world would require more than 70 Q of energy by the year 2000. No breeding, no atomic age. Simple.


Friday, May 21, 2021

The Rt Factor in the Pandemic: Is it Useful for Anything?


by Ugo Bardi, 

In these notes, I do not intend to replace the epidemiology specialists, my purpose is informative and tries to provide some data and some useful information to everyone in this situation, where the pandemic has become more a political issue than a scientific one. So, if we are to make informed decisions, we need to have the tools to understand what we are talking about, very difficult in the current cacophony of data and reasoning. Here, I have done my best to clear up the Rt factor issue using as an example a hypothetical epidemic, "bluite", which causes you to turn blue like the characters in the movie "Avatar". 

Note, this post was translated and adapted from my Italian blog Medio Evo Elettrico."  It still contains references to the Italian situation. But I think most of it is of general interest.


You surely noticed how in the discussions about the pandemic, the "R factor" is very popular. This factor, expressed as "Ro" or "Rt",  seems to give us useful information in a simple form, and we all know that politicians are always looking for simple solutions to complicated problems. And it is also based on the Rt factor that many governments decide on their restriction policies.

However, I bet that neither the politicians nor many of the tv-virologists who populate the media really understand what exactly this Rt factor is. In the real world, things are never simple and the R factor is not an exception to the rule. As Professor Antonello Maruotti  (1) noted the use of the Rt factor could result in a "persistent blindness on the part of political decision-makers." 

So what exactly is this Rt? How is it determined? How useful is it? And is it really a parameter on which it is worth basing all the restrictions policy that the government is doing? Let's try to understand how things stand.

A definition you can easily find all over the Web is that the Rt factor is “ the average number of people infected by an already infected person over a certain period of time."

There is a big problem, here. If we take the definition literally, it means that the epidemic can never go down. If there is at least one infected person, it will always infect someone else, and so the epidemic will grow forever. Clearly, the definition above is incomplete. We also need to take into account the people who recover (or die) in the time interval considered.

The matter is made more complex by the fact that in epidemiology there are two similar terms, one is called Ro and the other Rt. To give some idea of ​​the confusion, read the Wikipedia article on Ro, where you'll find that the definition of Ro "is not universally shared" and that "The inconsistency in the name and definition of the parameter Ro was potentially a cause of misunderstanding of its meaning." In short, a nice mess, to say the least. (this is from the Italian version of Wikipedia. The English one is better, but confusion reigns anyway)

Now, I understand that those who are specialists in a certain field tend to keep in the dark those who are not. But it seems to me that they are a little exaggerating, here. So, let's try to extricate ourselves from the various involved and misleading definitions, the best way to understand this story is to consider that a virus is a living creature so that biological laws and definitions apply. So, Rt in epidemiology is nothing else but the net reproduction rate parameter in biological populations.

This is an easily understood concept: take a population (say, rabbits). Consider the number of bunnies born for each generation: that's the "reproduction rate." Then, consider the number of rabbits that die in the same period of time because they are old, or they are eaten by foxes. Take the ratio of births to deaths and you have the net reproduction rate: if more rabbits are born than die, it must be Rt> 1. It is the opposite if Rt <1. A virus population is no different from a rabbit population in terms of growth or decline. Viruses multiply when someone infects someone else, but they die when someone is healed (or dies). 

How about Ro? It is simply the net reproduction rate at t=0, that is at the very beginning of the epidemic when there are no recovered and immunized individuals. 

These are the basic points. Then, it is always easier to understand something when it is expressed in terms of a concrete example, so let me propose an explanation based on a hypothetical epidemic that I call "bluite." There is some math in the following, but if you are willing to spend some time on that, you can develop a good "mental model" of how this Rt factor works.


The "bluite": a simplified epidemic example

Let's imagine a hypothetical infectious disease that is transmitted by contact, let's call it "bluite" because it makes you turn blue.
Incidentally, a disease that turns people blue really exists, it's called "argyria,the result of being exposed to silver salts. Some people ingest silver as an alternative therapy for certain diseases, not a good idea unless you want to find a job as an actor on the set of a science fiction movie. But let's not go into this, in any case, argyria is not infectious.

So, let's imagine that bluite arrived on Earth from the blue (indeed!). Let's also assume that bluite is a 100% benign disease. That is, it does not cause unpleasant symptoms and does not kill anyone. Hence, no one takes special precautions against it. Let's also assume that those who have been infected become immune forever, or at least for a long time. But their skin remains slightly grayish for some timeFinally, let's assume that bluite has a very short infection cycle: in one day it passes, and this applies to everyone. 

So, let's imagine that we counted, on a certain day, the number of blue-skinned people passing by on the street. Let's say that we counted 1000 people and that 10 of them had blue faces. If the sample is statistically significant, we can say that 1% of the population is infected. If we extrapolate to the whole population, suppose we are in Italy with 60 millions of inhabitants, it means that there are 600,000 people infected with bluite. This fraction is called "prevalence" in the jargon of epidemiology.

So far, so good, but that doesn't tell us anything about how the epidemic is evolving. For this, we need data measured as a function of time. Let's assume then that we do the same measurement again the next day. We find that there are now 20 blues, again out of 1000 people: this number of new infections in a certain period is called the "incidence." In this particular case, since the infection lasts one day and we make one measurement per day, the incidence is equal to the prevalence. 

Can we now measure the Rt factor? Sure. We said that Rt is the net reproduction rate of the population. So, over a one day interval, we have 20 newly infected people, but 10 people recovered in the meantime. It follows that Rt = 20/10 = 2. Easy, isn't it? (note that I chose the data in such a way as to have a nice round number as the result).

Easy, but you have to be careful when you extrapolate this procedure. At this point, you could say that if in one day the number of infected people have doubled, their number will continue to double every day. That is, 10, 20, 40, 80 ... etc. 

This is the mistake made by those who speak of the "exponential growth" of the epidemic; it is an acceptable approximation only in the very early stages of diffusion. Do some math, and you will see that if the number of cases of bluite were to double every day, in a week, there would be more people infected than the whole population. Slightly unlikely, to say the least.

The mistake here is to confuse the net reproduction rate (Rt) with the (simple) reproduction rate. They are not the same thing: the former is the growth rate of the population, the latter is the probability that a "blue" has to infect a "normal" when an encounter takes place. In general, we cannot directly measure the reproduction rate, we can only estimate it. Just to propose some numbers, let's assume that, on average, everyone in the population encounters 4 people every day at a close enough distance to infect them. Since there were 10 blues in the beginning, and 20 new ones came out, it would seem that the probability of infection at close range was 50% for each encounter. But is not so.

Not all people a blue encounters are "normal," that is susceptible to infection. We said that there were 10 blues in the population when the measurement was made and we may also assume that there were 10 grays (previously infected, now immune). It follows that only 98% of the population are susceptible ("normal") people. So the probability for a blue to infect someone is not 50%. It is 0.5 / 0.98 = 51%. It's a small difference, but it's the key to the whole story. 

To understand this point, first let's estimate the value of Ro, when the first blue alien from the planet Pandora landed and began infecting Earthlings. At that time, the whole population (100%) was susceptible to infection. Since we found that the simple reproduction rate is 0.51, it follows that Ro = 0.51x4 = 2.4. This was the initial value of the net reproduction rate when the epidemic had just begun.

But Ro has to do with the past, let's instead calculate how things are expected to develop in the future. The next day, the 20 infected people will each interact with 4 people, and a total of 80 people will be exposed to the virus. Not all of them will be susceptible, the number will be equal to 1000 (total number of people) - 20 (the blues of the day) - 20 (the grays of the previous days) divided by the total population. That is 960 people, or a fraction of 96%. It follows that the 20 infected people will generate 20 * 0.51 * 4 * .96 = 39 new infected individuals and not 40, as it would have been the case if the number of infected people had remained constant. At this point, Rt has shrunk to 39/20 = 1.96. You can see that Rt will shrink a little every day that goes by

From here, you can have fun doing a calculation with an excel sheet, but I did it for you. Here are the results, the red curve is a fitting with an asymmetric sigmoid curve:

 

Note how the curve of the daily infections (red) has the typical “bell shape" of epidemic curves (mathematically, it is the same as the "Hubbert Curve" in petroleum extraction). Note also that we didn't assume that the infection was cured or that there were precautionary measures in place: distances, face masks, nothing like that. Infections go to zero simply because fewer and fewer people remain susceptible. 

In this particular case, the number of people who contracted the infection stabilizes at around 74% of the total at the end of the epidemic cycle. The rest will never be infected. Do you see how “herd immunity” works? Over a quarter of the people in the population do not become infected, even though the virus was highly infectious at the beginning and no one took precautions of any kind. It is an intrinsic property of the spread of an epidemic.

Notice also how the curve for Rt always goes down, at least in this simplified case. You see that when the epidemic is at its peak, Rt is equal to one. Eventually, it stabilizes around 0.5. Depending on the various parameters, it can stabilize on different values, but always less than 1. 

 

Effect of restrictions on bluite

Now let's have a little fun using this model to see the effects of restrictions. The idea of things such as "social distancing" or face masks is that they reduce the likelihood that the virus will be transferred from one person to another. This is sometimes called "crushing the curve". 

First, let's plot again the results we obtained above without assuming any restrictions.

 

Now let's try to reduce the likelihood of the infection by 25% by some unspecified method. Here are the results

 


You see that the curve is indeed "crushed". But also note that the duration of the outbreak is longer and that the final value of Rt, contrary to what one might expect, increases slightly instead of decreasing. As for the total number of infected people, the restrictions have reduced it from 74% to about 58% of the population. If we assume that the effect of the restrictions is even greater, say to 50%, we can squeeze the curve even further and reduce cases to about 15% of the population. By further reducing the likelihood of infection, the epidemic just doesn't develop. Finally, note that this is the result of having imposed the restrictions from the start of the epidemic cycle and of maintaining them for the whole cycle.

Let's now try to see what happens if, as it is more likely, the restrictions start at some moment after the epidemic has already started and they are maintained for a limited time window. In the graph below, restrictions with a 25% reduction effect are assumed to have been put in place on the third day, and reopening occurs on the ninth day.


Notice that the contagion curve more or less retains the "bell shape," although it is now a bit skewed. Instead, the Rt factor shows fairly sharp discontinuities. Note also that the infection lasts longer. We have reduced the intensity of the outbreak in exchange for a longer duration. In these assumptions, the total number of cases is intermediate compared to the two previous examples: the number of infected people stands at 67%.

You can have fun by changing the parameters, but the results can be summarized by noting that using restrictions to bring the infection curve to zero is almost impossible. The effect of the restrictions is seen as a discontinuity in the Rt factor curve better than in the contagion curve. 

 

The real world

All this applies to a hypothetical epidemic that we have called bluite and to a simplified model. In the case of a real epidemic, the situation is more complex, but the results are not very different. The basic prediction of the model, that of the "bell" shape of the contagion curve, is confirmed by real-world data. In the figure, we see an example, a recent cholera epidemic in Kinshasa, Congo.

 


In this, as in many other real cases, we see a "bell-shaped" curve. Note how the number of cases never really goes to zero, contrary to what the model predicts. The pathogen becomes "endemic", ready to return to the scene when it finds favorable conditions to start over. 

What can we say about Rt in the real world? Here, the calculation is much more complex than for the hypothetical bluite. The infection does not have a fixed duration and it is also possible to get re-infected. Then there are the various uncertainties in determining the number of infected people, the delays with the availability of data, the effects of mutations, and more.  

The result is that calculating Rt for an ongoing epidemic is a complex matter that is left to specialists.  With these methods, the prediction that Rt should fall with time during each epidemic cycle is generally verified, but it is also true that many epidemics have multiple cycles, so the Rt factor can also reverse its trend and restart growing for a certain period.

Here are some recent data (for Italy) from Maurizio Rainisio's FB site (2). Here, you see an equivalent of Rt (which Rainisio calls the "Weekly Growth Rate"). The epidemic had two phases, probably due to seasonal factors, or perhaps also to the effect of the "variants" of the virus. Notice how the peak of the most recent phase corresponds to Rt = 1.

 

Here, it is very difficult to see an effect of the various red, orange, yellow, etc. zones (as they were created in Italy). For example, Rt showed a steep rise at the beginning of February 2021, while it started to decline around February 20. Is there a correlation with any specific action taken by the government that can be seen in the curve?  Maybe, but it is certainly weak.


 Conclusion: is Rt any good?

The usefulness of something always depends on the context. A submachine gun can be very useful in certain circumstances, but it's a bad idea if it's in the hands of a Taliban, especially if there's a tv shop nearby. This also applies to statistical models if they end up in the hands of people who don't understand them.

Thus, in the first place, the calculation of the Rt factor does not give you, and could never give you, any more information than what is already present in the curve of the trend of the epidemic. We saw that epidemic curves tend to have a "bell" shape so that it is possible to qualitatively understand whether the epidemic increases or decreases simply by the shape of the curve. The calculation of the Rt factor may be more sensitive to the trend, but it adds no more information. 

Then there is the problem that the value of Rt can tell us if the epidemic grows or declines, but nothing about the number of infected people. Clearly, there is a big difference if we have 100 infected people out of 1000 or if we only have 10, but the value of Rt could be the same. And this is not a detail: depending on the absolute value of the number of infections, hospitals may or may not risk becoming saturated. But the Rt factor, alone, tells us nothing on this point.

Above all, when the infected are few, the importance of the inevitable measurement errors and approximations changes (3). If you have 100 cases out of 1000, an error of a few units has little effect: whether they are 101 or 99, nothing changes. But if you have two cases on a certain day, while you had just one the day before, you would think that Rt is much larger than 1, and you should sound the alarm. In this case, the sensationalism of the media is a big problem. And so you could find yourself shutting down an entire country because of a statistical fluctuation.

But the biggest problem is precisely in the concept. As I said before, many people don't understand how an epidemic mechanism works and truly believe that an epidemic grows exponentially until everyone is infected. And, consequently, they are convinced that if we see that the contagion curve decreases, this is due solely and only to the restrictions. You find it explicitly written, sometimes: "the Rt factor measures the effect of the containment measures". But this is absolutely not the case!

Not that there is no way to slow down an ongoing epidemic! Vaccines, for example, force the achievement of immunity in individuals and cause herd immunity to be achieved more quickly. But if you see the epidemic waning or rising, you don't necessarily have to relate it to restrictions or vaccines alone. The epidemic has its own cycle, you can slow it down, but you have to take that into account.

Unfortunately, the debate has arrived at the conclusion that the only thing (aside from vaccines) that can stop the epidemic are restrictions. And the restrictions have a huge cost not only on the economy but also on the health of citizens. But until we think about it we will continue to insist on measures that may be exaggerated and not justified in comparison to the costs.

In essence, the problem is that many people, even among policymakers, cannot read a Cartesian graph and have no idea how an epidemic cycle works. So, they tend to rely on a single magic number, "Rt" for simplicity. But the situation does not lend itself to extreme simplifications and, as always, ignorance pays only negative dividends.

 

References

1. https://www.romatoday.it/attualita/coronavirus-professore-lumsa-sbagliate-decisioni-su-rt.html

2. https://www.facebook.com/La-Peste-111172767208456

3. http://www.radiocora.it/post?pst=39381&cat=news



Monday, May 17, 2021

Give a man a fish, and he will eat for a day. Teach a man how to fish, and you'll find that he already knew that better than you



The UN program "The Ocean Decade" is starting this year. It is supposed to be ten years of research, assessment, and development of what the world's oceans can provide to humankind and how that can be managed in a sustainable manner within the concept called "The Blue Economy". It is a good idea, in general, but from what I saw up to now, many of the participants in the program are still anchored to the view that the Oceans contain large, untapped resources that can be exploited within the model of "sustainable development," normally understood in terms of economic growth. 

That may be a remarkable misunderstanding. As we explain in our recent
book "The Empty Sea," the world's oceans do contain enormous resources, but it is also true that -- like all biological resources -- overexploitation is a misunderstood risk that always takes people by surprise. 

It is a mistake done over and over: when the yield of a fishery goes down, governmental agencies think it is a good idea to provide fishermen with more powerful boats and other technological tricks. It works, just until it doesn't. Then, it makes things worse. Overexploited fish stocks collapse, leaving fishermen with plenty of useless hardware and the sea reduced to a desert. 

Below, Paul Jorion tells a story that provides much food for thought in this field: the pretense of Western "experts" to know more than the local African fishermen and to help them by means of more powerful engines and better fishnets. And, as usual, the result was plenty of wasted money, possibly worse than that. The apparent inability of the Fishermen of Benin to produce as much fish as produced in nearby regions was not because they were bad fishermen. It was because of the lack of fish off the coast of Benin.

"Upwelling" is a concept discussed in some detail in our book, it is the oscillating phenomenon that characterizes the "El Nino/La Nina" cycles off the Peruvian coast. Upwelling brings nutrients to the surfaces and generates the growth of the fish stocks. The lack of upwelling has the opposite effect. The sea is a complex environment, you can see it as a giant holobiont that goes on in cycles, as living systems often do. You must understand these cycles, you can't fight them with technology. If you try, you'll destroy the very resources that make you survive. In this case, the fishermen of Benin had perfectly well understood how to deal with the lack of upwelling: you don't fish. 

Jorion doesn't say what happened with the program, but he hints that it was carried out and that it failed, badly -- as it had to. Will we ever be able to understand that growth is not always the solution for all problems?




AFRICA AND ME III. FISHERMEN NOT KNOWING HOW TO FISH
MAY 15, 2021 PAUL JORION 



By Paul Jorion

The FAO project in Benin aimed at developing fisheries in the country. It had been observed that, unlike neighboring countries, coastal fishing was languishing there. Benin was living at that time under a Marxist-Leninist regime and it was considered in high places at the United Nations that the time had come to intervene also in countries whose government was of this type.

Our project was sponsored by Denmark and Japan. Its objective was to discover the reasons for the weakness of fishing and to remedy them. As is often the case with development aid projects, the conclusion we would come to was pre-established: we could read it in the fact that Denmark had offered nets and Japan Yamaha outboard motors.

A preliminary survey on the situation in Benin had been carried out a few weeks before my arrival by a British anthropologist colleague: Jacob Black-Michaud, who had highlighted in a report of about thirty pages the mediocrity of the local fishery. This report established that, for some unknown reason, fishermen in Benin did not manage to fish with the same skill as observed in neighboring countries. The rationale for the United Nations to come to their aid lay there.

I had a real affection for Jacob Black-Michaud, whom I had previously had the opportunity to meet during an evening in Cambridge. His career had been similar to mine: from the university environment to anthropology applied to development projects in the field. But unlike me, who loved to deal with reality, he lived the transition from university life to that of a bush adventurer like a downfall. I would share his sentiment, but at a different time: when, fourteen years later, at the age of fifty-one, I was recruited for my first job in the United States: a programmer in a subprime loan company. I would have the opportunity to ask myself then, like him in Benin: "How did you get there: what happened to you?" 

It is always with real emotion that I think back to him and to our conversations about the deep meaning of our profession and the challenges of what is called "development aid". Black-Michaud had lived in Ceylon an experience that had transformed him on a personal level but also made him cynical on these subjects. I remember our last conversation: I didn't share his belief that anything we did was wasted (and my own experience would convince me that it was indeed not, despite the sheer size of some obstacles to come up against.) and I told him.

He wrote to me shortly before the Christmas holidays. Unfortunately, I was not surprised to learn a few weeks later that during a ski tour he had fallen to his death, having fallen from an overhang.

It was therefore necessary to find out why the performance of coastal fishing in Benin was so disappointing. In Houat, I went to a good school for the fishing profession, and also to a good school in Cambridge, in terms of mastering analytical tools. The first thing I did, with the help of a team of "statisticians" that the project had enabled me to recruit, was a census of the eight fisherman camps in Benin (including Beninese and Ghanaian people) who had been selected for our mission. project.

A census allows, among other things, to build an age pyramid. This is a very simple exercise in graphing the age composition of a population. After having counted the people of each sex of such or such age, this number is represented on a horizontal scale, the men on the left and the women on the right, by convention. The age groups are stacked along a vertical scale graduated according to age: children between zero and one year old are shown at the base, while the highest age group is shown. which belongs to the oldest person still alive.

For each age group, a line is drawn whose length is proportional to the number of people of that age. As with aging and accidents people die, the general shape tapers upwards. In traditional populations ravaged by very high infant mortality, the figure generally had the shape of a pyramid, the steps of which were made up of age groups. 

The pyramid is generally asymmetrical at the top: thicker on the female side for the reason that everyone knows that in all societies, women live longer than men and there are therefore more women than men at the top.

However, the age pyramids of my villages all had the same unexpected shape: asymmetrical, showing a very noticeable dip on the side of men in the age groups of fifteen to forty-five years. The interpretation was unequivocal: men in their prime were missing out. Where could they possibly be?

I went to see the women: "Where are the men I asked?" "In Liberia, Gabon, Congo!" They replied, adding:" Where there is fish. Not like here!" The men followed the fish, often leaving the women behind. Sometimes the women followed their men, in trucks, along the coast. I would discover that the Beninese had the reputation of being outstanding fishermen wherever they went fishing, returning periodically to the country, either seasonally or after stays that lasted several years. The men we saw in Benin, for example practicing the "beach seine" (this long pocket-shaped net that is spun off with the help of a boat after leaving one of its two ropes retained by a team on the beach, and which is then folded down after having brought the second rope back to the beach, the two teams then hauling the pocket by its two ends), were either those occasionally returning, those who came to see their families, or, and essentially, the disabled and the sick ones. I had involuntarily innovated, I had introduced a new style in development projects in West Africa: I had spoken to the people we said we wanted to help!

The explanation for the absence of fish in large quantities in Benin is the absence of "upwelling ", a thermal phenomenon: the upwelling of cold water from the depths near the coast, allowing an algal bloom. diatoms on which the larvae of mollusks and crustaceans feed. The upwelling allows the plankton (phytoplankton and zooplankton), basic food fish, to grow. The upwelling moves along the coast of West Africa but it rarely develops in the Gulf of Guinea, in the area stretching from Benin to the west of Cameroon. In this area, fish are rare.

It was neither laziness nor incompetence that explained the mediocrity of fishing in Benin but the thermodynamics of the oceans. I explained this to my colleagues. It turned out very badly: the remedies available to us were, as I have already said, of two kinds: Danish nets and Japanese engines. The only explanations considered for the poor fishing in Benin were inappropriate equipment and the incompetence of the fishermen. Unfortunately, the real explanation refused to fit into this pre-established mold.


Friday, May 14, 2021

A Concise History of the concept of "Hydrogen Economy"

Reposted from "The Hydrogen Skeptics" blog. 

\    
The concept of "hydrogen economy" has a distinct "1960s" feeling. It is the idea of maintaining the lifestyle of the post-war period, with suburban homes, green lawns around them, two cars in every garage, all that. The only difference would be that this world would be powered with clean hydrogen. It all started with the dream of cheap and abundant energy that nuclear plants were believed to be able to produce. The idea changed shape many times, but it always remained a dream, and probably will continue to remain a dream in the future.

 

by Ugo Bardi

Before discussing the history of the concept of "hydrogen economy" we should try to define it. As you should expect, there are several variations on the theme but, basically, it is not about a single technology but a combination of three. Hydrogen would be used for: 1) energy storage, 2) energy vectoring, and 3) fuel for vehicles. 

This "hydrogen triad" misses the fundamental point of how hydrogen should be created. Often, that's supposed to be done using electrolysis powered by renewable energy but, alternatively, from natural gas, a process that would be made "green" by carbon sequestration. There are other possibilities, but all have in common being multi-step processes with considerable efficiency losses. And the fact of never having been proven to be economically feasible on a large scale.

Indeed, the immediate problem with replacing fossil fuels is not vectoring or storage, surely not powering individual cars. It is the enormous investments needed to build up the primary production infrastructure that would be needed in terms of solar or wind plants (or nuclear), which don't seem to be materializing fast enough to generate a smooth transition. Surely, not growing fast enough to be compatible with a relatively inefficient infrastructure based on hydrogen. Nevertheless, the "hydrogen economy" seems to be rapidly becoming the center of the debate

Indeed, the Google Ngrams site shows two distinct peaks of interest for the concept, both grew rapidly and rapidly faded away. But it seems clear that a third cycle of interest is starting to appear, and that is confirmed by what we can read in the media.

So, why this focus on a technology that lacks the basic elements that would make it useful in the near term? As it is often the case, ideas do not arrive all of a sudden, out of the blue. If we want to understand what made hydrogen so popular nowadays, we need to examine how the idea developed over at least a couple of centuries of scientific developments.

That hydrogen could be used as fuel was known from the early 19th century. Already in 1804, the first internal combustion engine in history was powered by hydrogen. The first explicit mention of hydrogen as an energy storage medium goes back to John Haldane in 1923, where he even discussed the possibility of using "oxidation cells" that we call today "fuel cells," invented by William Grove in 1838.

But these ideas remained at the margins of the discussion for a long time: no one could find a practical use for a fuel, hydrogen, that was more expensive and more difficult to store and use than conventional fossil fuels. Things started to change with the development of nuclear energy in the 1950s, with its promise of a new era of abundance. But, in the beginning, hydrogen found no role in the nuclear dream. For instance, you wouldn't find any mention of hydrogen as an energy carrier in the "manifesto" of the atomic age: the 1957 TV documentary by Walt Disney, "Our Friend, the Atom.

In the book derived from the movie, there was an entire chapter dedicated to how nuclear energy was going to power homes, ships, submarines, and even planes. But nothing was said about the need for fuels for road transportation. The atomic car was just briefly mentioned as "not a possibility for the near future." The engineers of Ford thought otherwise when, in the same year (1957), they proposed the concept of a nuclear-powered car, the Ford Nucleon. But nobody really believed that such a car could ever be produced. At the beginning of the nuclear age, there was no concern about climate change, and no one foresaw the need or the possibility of entirely replacing fossil fuels from the world's energy infrastructure.

The idea of hydrogen as an element of the new nuclear infrastructure started gaining weight only in the 1960s, in parallel with the problems that the nuclear industry was experiencing. The assessments of the world's uranium ores showed that mineral uranium was not abundant enough to support a large expansion of nuclear energy as envisaged at that time. But the industry had a technological solution: "fast" reactors that could be used to "breed" fissile materials in the form of plutonium. The fast reactor technology could have increased the duration of the uranium reserves of several hundred years, perhaps thousands. 

Fast reactors turned out to be more expensive and complex than expected, but the problem was not technological, it was strategic. The "plutonium-based economy" would have generated a gigantic proliferation problem. It was clear to the Western leaders that diffusing this technology all over the world put them at risk of losing the monopoly of weapons of mass destruction that they shared with the Soviet Union. 

So, if fast breeders were to be built, they needed to be only a few and to be very large to allow tight military control. They also needed to be large to exploit economies of scale. But that led to another problem: how to carry the energy to consumers? Electrical lines have a distance limit of the order of a thousand km, and can hardly cross the sea. The kind of plants envisaged at that time would be spaced much more than that from each other. It was at this point that the idea of hydrogen as an energy carrier crept in. It could have been used to distribute nuclear energy at a long distance without the need to distribute the reactors themselves. 

It was a concept discussed perhaps for the first time in 1969 by the Italian physicist Cesare Marchetti, He was, (now he is in his 90s) a creative scientist who proposed that just 10 gigantic fast reactors of a few TW each would have been enough to power the whole world. The reactors could be built on remote oceanic islands, where the water needed for cooling would have been abundantly available. Then, the energy would have been transformed into liquid hydrogen at low temperature and carried everywhere in the world by hydrogen carrier ships. In the image from one of Marchetti's papers, you see how an existing coral atoll in the South Pacific Ocean, Canton Island, could be converted into a Terawatt power nuclear central.

To paraphrase the theme of Disney's "nuclear manifesto" of 1957, the hydrogen genius was now out of the bottle. In 1970, John Bockris, another creative scientist, coined the term "hydrogen-based economy." In the meantime, NASA had started using hydrogen-powered fuel cells for the Gemini manned spacecraft program. It was only at this point that the "hydrogen car" appeared, replacing in the public's imagination the obviously unfeasible nuclear-powered car. 
 
It was a daring scheme (to say the least), but not impossible from a purely technological viewpoint. But, as we all know, the dreams of a plutonium economy failed utterly. With the oil crisis of 1973, the nuclear industry seemed to have a golden opportunity. Instead, it collapsed. We can see in the Ngrams how the concept of "fast breeder" picked up interest and then faded, together with that of nuclear energy. The reasons for the downfall of the nuclear industry are complex and controversial but, surely, can't be reduced to accusing the "Greens" of ideological prejudices. Mainly, the decline can be attributed to two factors: one was the fear of nuclear proliferation by the US government, the other the opposition of the fossil fuel industry, unwilling to cede the control of the world's energy production to a competitor. Whatever the causes, in the 1980s the interest in a large expansion of the nuclear infrastructure rapidly declined, although the existing plants remained in operation.

And hydrogen? The downfall of nuclear energy could have carried with it also the plans for hydrogen as an energy carrier, but that didn't happen. The proponents repositioned the concept of "hydrogen economy" as a way to utilize renewable energy. 

One problem was that renewable energy, be it solar, wind, or whatever, is inherently a distributed technology, so why would it need hydrogen as a carrier? Yet, renewables had a problem that nuclear energy didn't have, that of intermittency. That required some kind of storage and hydrogen would have done the job, at least in theory. Add that at in the 1980s there were no good batteries that could have powered road vehicles, and that made the idea of a "hydrogen car" powered by fuel cells attractive. Then, you may understand that the idea of a hydrogen-based economy would maintain its grip on people's imagination. You can see in the figure (from Google Ngrams) how the concept of "hydrogen car picked up interest. 

It was a short-lived cycle of interest. It was soon realized that the technical problems involved were nightmarish and probably unsolvable. Fuel cells worked nicely in space, but, on Earth, the kind used in the Gemini spacecraft were rapidly poisoned by the carbon dioxide of the atmosphere. Other kinds of cells that could work on Earth were unreliable and, more than that, required platinum as a catalyst and that made them expensive. And not just that, there was not enough mineral platinum on Earth to make it possible to use these cells as a replacement for the combustion engines used in transportation. In the meantime, oil prices had gone down, the crises of the 1970s and 1980s seemed to be over, so, who needed hydrogen? Why spend money on it? The first cycle of interest in the hydrogen-based economy faded out in the mid-1980s. 

But the story was not over. Some researchers remained stubbornly committed to hydrogen and, in 1989, Geoffrey Ballard developed a new kind of fuel cell that used a conducting polymer as the electrolyte. It was a significant improvement, although not the breakthrough that it was said to be at the time. Then, in 1998, Colin Campbell and Jean Laherrere argued that the world's oil resources were being rapidly depleted and that production would soon start declining. It was a concept that, later on, Campbell dubbed "Peak Oil." In 2001, the attacks on the World Trade Center of New York showed that we lived in a fragile world where the supply of vital crude oil that kept civilization moving was far from guaranteed. Two years later, there would come the invasion of Iraq by the US, not the first and not the last of the "wars for oil." 

All these factors led to a return of interest in hydrogen energy, stimulated by the popular book by Jeremy Rifkin, "The Hydrogen Economy," published in 2002. The new cycle of interest peaked in 2006 (again, look at the Ngrams results, above), and then it faded. The problems that had brought the first cycle to its end were still there: cost, inefficiency, and unreliability (and not enough platinum for the fuel cells). Besides, a new generation of batteries was sounding the death knell for the idea of using hydrogen to power vehicles. Look at the compared cycles of hydrogen and of lithium batteries.

 Note the different widths of the peaks. It is typical: technologies that work (lithium) keep being mentioned in the scientific literature. Instead, technologies that are fads (hydrogen) show narrow peaks of interest, then they disappear. You can't just keep telling people that you'll bring them a technological marvel without ever delivering it. 

At this point, you would be tempted to say that hydrogen as an energy carrier and storage medium is a dead platypus. But no, the discussion on the hydrogen economy is restarting, research grants are being provided, plans are being made. 

Did something change that's generating this new cycle? Not really, the technologies are still the same. Surely there have been marginal improvements, but hydrogen remains an expensive and inefficient method to store energy. So, why this new round of interest in hydrogen?

The vagaries of memes are always open to interpretation, and, in this case, we can suppose that one of the elements that push hydrogen back to the global consciousness lies in its origins of supporting technology for a centralized economy, the one that would have resulted from the widespread use of fast breeder reactors. In this sense, hydrogen is in a different league from that of most renewable technologies that exist and operate over a distributed network. 

So, even if the nuclear industry is today a pale shadow of what it was in the 1960s, there remains the fossil fuel industry to champion the role of centralized energy supply. And, obviously, the fossil fuel producers, who produce hydrogen from fossil sources, are those who are going to benefit most by a return to hydrogen, no matter how short-lived it will be. 

There may be another, deeper, reason for the success of the hydrogen meme with the public. It is because most people, understandably, resist change even when they realize that change is necessary. So, replacing fossil fuels with electricity-producing renewables is something that will force most of us to radical changes in our lifestyle. Conversely, hydrogen promises change with no change: it would be just a question of switching from a dirty fuel to a clean one, and things would remain more or less the same. We would still fill up the tanks of our cars at a service station, we would still have electric power on demand, we would still take two weeks of vacation in Hawai'i once per year. 

Unfortunately, people change only when they are forced to and that's what's probably going to happen. But, for a while, we can still dream of a hydrogen-based society that seems to be curiously similar to that of the US suburbs of the 1960s. Dreams rarely come true, though.